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ABSTRACT

A formula for the impedance of a short, cylindrical dipole in a
magnetoplasma is derived using quasi-static electromagnetic theory. The
formula is valid in a lossy plasma and fpr‘any dipole orientation with
respect to the magnetic field., It is shown that the quasi-static theory
can be interpreted in termsAéf scaled coordinates and that a cylindrical
dipole in a magnetoplasma: has a free space equivalent with a distorted
shape, The dipole impedance is found to have a positivé real part under
lossless conditions when the quasi-~static differential equation is hyper-
bolic; this indicates that the guasi-static theory predicts a form of
radiation, The effects of plasma wave excitation and various assumed
Current distributions are discussed., Laboratory measurements of monopole

impedance are found to agree fairly well with the theoretical calculations,
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1. INTRODUCTION

When an antenna is immersed in some medium, knowledge of its impedance
is important whether the antenna is regarded as part of a communications
system or as a probe for studying the properties of the medium, For the
former applicétionj energy reflection from the antenna must be minimized
and for the latter, the relationship between impedance and medium properties
must be well established, The foregoing statements apply especially to
rocket and satellite exploration of the ionosphere and also to plasma
diagnostics in the 1aborat§ryc For these reasons it was decided to study
both theoretically and experimentally the impedance of a short cylindrical
dipole antenna immersed in a .magnetoplasma, Only linear (low RF level)
phenomena will be discussed in this report,

The analysis is limited to short antennas (short compared to a wave=~
length) in order to avoid the problem of obtaining theoretically thé antenna
current.distributions° If the antenna is short enough;, the current may
be assumed to vary linearly from a maximum at the center to zero at both
ends., Furthermore a short antenna may be conveniently analyzed using
quasi=-static electromagnetic theory, a method which (in free space at
least) gives good impedance results but does not predict radiation, In
this report the quasi~static theory is derived by means of a low fre-
quency approximation and is used to calculate dipole impedance for any
orientation of the dipole with respect to the steady magnetic field.
Furthermore it is shown that the first near field term of Mittra and

i
Deschamps is the quasi-static field,




Laboratory impedance measurements also are simplified by limiting
the experimentation %o short antennas, Since a short antenna radiates
little energy, the reflection of this énergy from nearby obstacles has
negligible effect on the impedance, This is especially important when
the antenna is immersed in a laboratory plasma because the walls of the
plasma container must necessarily beacloée to the antenna, The measure-
ments to be described were performed on a monopole antenna having a length
of approximately a twentieth of a free space wavelength and inserted in
the end of a cylindrical glass discharge tube, For experimentél conven-
ience, measuremenfs are limited to the case in which the steddy magnetic
field is parallel to the monopole axis, The impedance measurements agree
reasonably well with the quasi=-static theoretical predictions,

An unexpected result of the quasi-static theory is the prediction of
radiation which occurs when the quasi-static differential equation is
hyperbolic. The effec* of this radiation on impedance is not only pre-
dicted theoretically buf also detected experimentally, Electromagnetic
effects such as radiation were not expected because, in free space; a
quasi-static (1irrotational) electric field cannot induce a magnetic field,
In a magnetoplagma, however, the electric field does induce a magnetic
field and radiation can take place, .

The validity of the theoretical model is examined from several view=-
points, An impedance correction is computed;, using a second order term
arising in the derivation of the quasi-static field theory, The problem
of the influence of the assumed current distribution is treated by com-

puting the effects of two different current distributions, 'In addition,




the effect of the exgitation of longitudinal plasma waves is computed
for the isotropic case, However, as far as the laboratory experiment is
concerned these corrections are of negligible importance compared to the
problem of non-uniform electron density resulting from plasma diffusion
to the antenna surface and to the container walls, The magnitude of
this effect is estimated by calculating the impedance of a non-uniform,
isotropic plasma between parallel conducting plates.

There are relatively few published papers dealing with the impedance
of antennas in anisotropic media. Kononov et al;? have applied quasi-
static theory to the problem of an infinitesimal dipole but their field
and impedance exbressions differ with those in this report due to their
choice of an integration contour, Katzin and Katzin® have derived #n
impedance formula for longer dipoles but a great deal of numérical inte-
gration would be necessary to extract impedance values from their formula,
Whale? has discussed some aspects of the problem, including the effect of
plasma wave excitation on radiation resistance, Bramley5 has obtained an
impedance expression valid for low electron density or weak magnetic field,
K.?.iser’6 has observed a real part in the input impedance of a biconical
dipole but he believes this to be the result of energy storage rather than
radiation,

Sqme papers on related topics should be mentioned for the sake of
complétenesso The impedance of antennas in conducting,'isotropic media

7

has been studied by King and Harrison  and also by Deschamps8 whose

impedance relation is particularly simple and useful, Quasi-statie¢ theory
has been applied to propagation problems in plasmas by Trivelpiece and

Gould® and in ferrites by Trivelpiece et alg10 and several other authors,



A thorough discussion of source problems in isotropic, warm plasma has

3

been presented by Cohen"® in a series of three articles,




2, THE QUASI-STATIC THEORY FOR A SHORT DIPOLE ANTENNA
IN A MAGNETOPLASMA

2,1 Derivation of the Basic Equations

In a plasma with a z- directed DC magnetic field, Maxwell's equations

are

VxH= jwfKE+J (2.1.1)
VXE=-jwpu_ H (2.1,2)
The relative permittivity tensor K is
[ in
K jK 0
0 7
o 0 K
o
in which XK = 1 - §
0 6
v an
K = 1- X
uiy?
20



2 2
N
X = iﬁm w2 = =2
= N 7 n€
of o
w eB
H 0
= — W = e
Y w H m

v

w v = collision frequency

N = electron density

B = DC magnetic flux density

W = angular frequency of signal source

e = magnitude of electron charge

m = electron mass

€ = permittivity of free space = (367 x 10°)7t fd,/m,

p = permeability of free space = 4T x 1072 hy../m,

k = W J;f_g— = < = %E = free space propagation constant
o 0O o c o

c = velocity of light in a vacuum

N\ = free space wavelength

M.K.S. units (rationalized) are used throughout,

The impedance analysis of an anfenna requires knowledge of its near
field, 1If all the dimensions of the antenna are small compared to a
wavelength, the use of an approximate near field theory is indicated in
order to simplify the otherwise complicated calculations, Such an
approximate theory can be obtained by first formulating general near
field expressions and then letting the antenna dimensions become very

small in terms of wavelengths. An equivalent process involves letting the




frequency become arbitrarily small while maintaining the antenna size
and the properties of the medium cohstant (i.en, the dispersive nature
of the medium is not considered), This low frequency limit is employed(
in the following paragraphs to derive quasi~-static expressions for the‘
electric field, the magnetic field and Poynting's theorem,

The first step is to obtain a general field formulation valid for
electromagnetic problems in a :magnéﬁbplasma" It is desired to derive
E and H from a pair of potentials chosen in such a manner as to display
the quasi~static electric field as a distinct part of the total electric

field, The total electric field can be expressed in terms of a scalar

potential ¢ and a vector potential A,

E:-V\P-JWK (2.1.4)

Substitution of Equation (2.1.4) in Equation (2.1.2) gives

=
|
il
<]
b
>
”~
™o
et
o
N’

The above two relations, together with Eauation (2,1.1) give

A-~k2KA=-j € J . |
VXVXA k0 KA pr.OOKVLP+p.O (2.1.6)



Operation on Equation (2.1.6) with the divergence operator gives

q - -J
V:KVY + j wK A = Zwﬁ (2.1.7)

This equation can be simplified by introducing the following restkiction

V'KZ= 0 (20198)

This is a modification of the Coulomb gauge condition and is discussed in

the Appendix, Equation (2.1,7) becomes
v-3J
VKV Y = ook (2.1.9)
o

This differential equation can be used to obtain the potential Y due to a

current density I, 1f q is the charge density, the equation of continutty

VT & j w q = 0) puts Equation (2.1.9) into the form

,V?KVLIJ:;-

mlo

(2.1,10)

*
which may be regarded as a modified Poisson'’s equation, A complete

solution for all the fields would involve solving Equation (2.1,9) or

Equation (2,1,10) for Y, substituting ¢ in Equation (2.1.6) and solving

* Equation (2,1,10) is widely used and is the quasi-static differential
equation for the scalar potential {,




for K. Expressions for 3 and E couldvthen be derived using Equations
(2.1.4) and (2.1.5).

Solution of the above equations can be facilitated by the use of
spatial Fourier transforms. A transform will be indicated with a wavy
line ( ~°) and the transform variables will be represented by the vector

k, Transformation of Equation (2.1.6) gives

(2.1,11)

=
>
I
€
1:
(4}
=
=1
€1
+
b=
(A }]

o o o
where
-M=Ex§x+k:lg
Transformation of Equation (2.1.9) ‘gives
$=-oe ko J (2.1.12)
Y3 pay —
o k - Kk
Substitution of Equation (2.1,12) in Equation (2.1,11) gives
fod - KXk ° 3 o
A=p M?! S SLENEC S (2.1,13)

w1
.
3
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The electric field E can be expressed in terms of the potentials
and consequently in terms of the current density(E by transforming

Equation (2.1.4):

(2.1.14)

et
1
]
(4N
TN
=i
€1
+
€
>N
N

Similarly, transformation of Equation (2.1.5) gives an expression for

the magnetic field:

>it

H= ﬁ- ®X (2.1.15)

o

Thus the electric and magnetic fields can be expressed in terms of a

scalar potenitial and a vector potential which can be derived from the

source current in a straightforward manner, The gauge condition on the
potentials is chosen so that the scalar potential ¢ satisfies the relatively

simple quasi-static differential equation,

An examination of the equations in the preceding paragraph suggests
that some simplification may result if E and J are each separated into

two parts as follows:

E = E + E

o 1
(2.1.16)

~ ~& o~

J=J 4+ J
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in which

E =-jE¥
o] Jk‘p

Ew= - jwA

1

~ KEE - J

J = — = -
° k - Kk

5 5&?i31~E:£“ (2.1.17)
1 k K k

The following relations may be deduced readily:

~
—

kXK' J
0]

]
o

(2.1.18)

kK*dJd =0 (2.1.19)

J is clearly a transverse vector, However it is not the entire transverse
1

part of the current density since the other part 30 is not longitudinal;

rather, k! 30 is longitudinal, Equation (2.1.13) for the vector potential

becomes

f~1 - [~3
A=p ML (2.1,20)
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o8
Equations (2.1.20), (2.1.14) and (2.1.12) permit the two parts of E to

be expressed as

E =-—d- g1 7 (2.1.21)
o W€ o)
[o]
T oo-jwy MJ (2.1.22)
1 uo 1

o
Equation (2,1,18) shows that EO is a longitudinal vector, However it is
= com o
not the entire longitudinal part of E since in general k ° E11 # 0, Rather
KE is transverse, a fact which may be deduced from the gauge condition,
1

An expression for the magnetic field follows from Equations (2.1.20) and

(2,1.15). 1t is

H=j kxM> '31 (2.1,23)

from which -k = k02 M* Kk (2.1.24)

Substitution of Equation (2,1,24) in Equation (2.1.13) gives
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b
A=— EE-J w13 (2.1.25)
W€ ¥ Kk °
o]
from which
H= 3 kxM! 7 (2.1.26)

A comparison of Equation (2,1,26) with Equation (2.1,23) leads to the

conclusion that

kXM1'T =0 (2.1.27)

The decomposition of the current density into two parts ( a procedure
suggested by Professor G. A, Deschamps) evidently simplifies the equations
considerably. Furthermore it is clear that Eo is derived entirely from
30 and that béth El and H are derived entirely from 31, Similarly Y and
A are derived from 30 and 31 respectively. Thus the entire field pro-
blem has been divided into two distinct halves, one with the source 7
and the other with the source 31. Although J may be éonfined to é finite
region in space, 30 and 31 both exist outside that region,

The theory developed above does not use any approximations and is
valid as long as the constant permittivity tensor K is a valid representa-
tion for the properties of the medium, However, the near field analysis

of a short antenna can be simplified greatly by the use of a low frequency

approximation to the general theory, Since k0 is a parameter proportional
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to frequency, the low freduency approximation can be effected by letting
ko approach zero, As discussed before, the low frequency approximation
is not applied to the elements of the permittivity tensor K; that is,
the elements of K are to be considered fixed as ko approaches zero, It
will be shown that the first term of the approximation gives an electric
field equal to Eo (the quasi-static electric field), Furthermore it will
be shown that the low frequency approximation gives a magnetic field
consisting of two parts, One'part is the familiar magnetic field obtain-
able from the DC form of Ampere’s law and the other part is an induced
magnetic field which is non=zero only in an anisotropic medium,

The low frequency approximation (the limit as ko2 approaches zero)
can now be applied to the vector potential io Equation (2.,1.25) shows

~

that A can be expressed as follows:

>
it
m
x|
=
-
+
=
(e}
=
1 =]
[

M == = - =
o =2 Ek i + k2 MYJ (2.1,.28)
kf) k- KKk °

If the rectangular components of k are k k ka, then the matrix M is

1?7 2’
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[ 2 2 g Kk - 5k K K k
K4 k- KK K, I K
2 i1} 2 2 2 q
M=|-k k + jk ®K K+ K-k K -k k (2.1.29)
1 2 o 1 3 oO¢ ‘ 2 3
|
-k k -k k K+ K-k K
173 23 1 2 ©0 o
L My

The inverse of M can be expressed as MY =

Uiz

2 4
N +k¥ N +k N
2 2.1 2.2 (2.1,30)

K (acs KB+ K} e)
0 ] : (o]

in which D is the determinant of M, In order to consider the low frequency
limit, it is necessary to know the scalars a, b, c and the matrices

N .
) Nl’ N2° They are

®
il

t
-+ i+ K [x x® + K¥) + K X
1 2 3 1 2 o 3

=-kK k- KKk , (2.1,31)



i . ' .
b= K2-K2) (@ +K¥) +K K (2 +'K + 2 )
1 3 o 1 2 3

- det K

2
K (k2+k2)+K (K2.%%)
1 2 o 1 3
% .
Kk k + JK (K+ K°)
01 2 1 2

9

4
Kk k +jK k k
13 2 3

K2 kK k k k
1 i 2 3
k k K2 k k
12 2 8
k k k k K2
1 s 2 8 3

e
Kk k ~jK (k%+k2
o1 2 J ( 1 2)
'
K (2+k%)+K (2+k?)
1 2 o 2 3

PR

T
Kk k =jKk k
23 1 3

¢ o
Kk k -jJKk k
13 2 3
(]

.
Kk k +JK k k
2 3 13

9
K (k2+k+ 2K%)
1 2 3

16

(201032)

(2,1.33)

(2.1.34)
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. " N
K ~-jK 0
" '
N = j q
S K | KK 0 (2.1.35)
] Tigg
0 0 K "= K2
K
. o _

The vector potential expression, Equation (2.1,.28), now can be written as

= M, N - =
A== |- 24 ! J (2.1.36)

L2 a o 3

K

o]
N
-(b+kic) —§ + N+ ki N -
= p L 2. J (2.1.37)

° a+ kK b+ K c
0] (o]

In the limit as ko approaches zero, Equation (2.1.37) becomes !

(2,1,38)

=1
i
»lo
-
1
il

~

It should be noted that the above expression for Ko is independent of the

parameter ko.
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Low frequency expressions for E and H now can be derived using

1]

Equation (2.1.38).

E = -E- <+ %
o} 1
= - J (k ;-|:‘ 4 (.OK )
5 N_ K? BN\T~

1f kK is sufficiently small, the second term can be neglected (see Section

3.1). Under such conditions

1.

= E (2.1,40)

Equation (2.1,40) asserts that the predominant low frequency electric
&2
field can be derived entirely from the scalar potential y, Thus Eo is the

well-known quasi-static electric field, The preceding derivation not only
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displays the quasi-static electric field as a low frequency limit but also
provides a first order correction term (the second term in Equation (2,1.39)).
It will now be shown that the two terms of Equation (2.1.39) are identi-
cal to the two near field terms which can be derivéd by the method of Mittra
and Deschamp;ﬁ In their work, Mittra and Deschamps derive an expression for
one electric field component by going through two long divisions; the
following electric field derivation makes use of this approacho In‘the
notation of this report, the transformed electric field may be expressed

as.

=
i}

I
(SR
€
b=
=
Tk
L b

(2.1,41)
O
_=d 2 "1 T
= o6 ko M J
O
I A S S A
= =2 ° _° 3 21 7 (2.1.42)
°la+ kK2 b+ K ¢
: o] O
The first long division gives
bN cN0
~ N, Nl-——°+k20(u -— ~
E =% — + ko J (2.1.43)
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The second long division gives

(2.1.44)
NO bNo ;
- N K bN N-bN 4 (b°-c) =+ K c|—-N ~
E = i%— 2 2 v - 2 {2 1 = 4 J
o & a |z a ° a 4 ki b + kt c

The first two terms of Equation (2.1.44) are interpreted by Mittra and
Deschamps as near field terms because they are singular at the originu

Note that Equation (2.1,39) is identical to the first two terms of Equation
(201044)0

The transformed magnetic field was given by Equation (2,1.23): it is

H= 3 kxM* 7 (2,1.45)

Equation (2.1.30) shows that this can be expressed as

=1 1
i
.
w
x

2 J (2,1.46)
1

However,
- = - =D - — -
kXN J=k X(k kk J)
o 1

= 0 (2.1.47)
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Thus a general expression for the transformed magnetic field is

~ |"N + &N ~
H= j kyp=t 2 ] J (2.1.48)
. c ’

A comparison of Equation (2.1.23) with Equation (2.1.26) shows that

Equation (2,1.48) can be written as

~ _[‘N +kf)N
H=ka b h 2
Cc

J (2.1,49) .
lf + kzb + K4
o o
In the limit as kﬁ——»o 5 Equation (2.1.48) becomes
kx N J
H = j T (2.1.50)
o a '-'\ ° -]
and similarly, Equation.(2°1°49) becomes
~ Exﬁ%ﬁ
H =j —A— (2.1,51)
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Further insight into the meaning of Equations (2.1.50) and (2.1.51)

can be obtained by employing a different derivation, One of Maxwell's

equations is

UxH= jwWEKE+J (2.1.52)

Taking the curl of Equation (2,1,52) and setting ¥V . H = 0 gives

vzii:-dweovxx‘ﬁ-vx.r (2.1.53)

~ V Y., Substitution of

In the low frequency or quasi=-static limit, E

this in Equation (2.1.53) gives

T

VPH = jwe€ VXKV -V (2.1.54)

If K is a scalar the first term on the right hand side is identically

-—' —
zero and HO and J are related only by the point form of Ampéfe's law

for direct currents, If K is a tensor, the term containing K is not zero
-t )

in general and thus contributes to Ho. Evidently in an anisotropic medium

an irrotational electric field can contribute to the magnetic field, A
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convenient expression for the magnetic field can be obtained by taking the

Fourier transform of Equation (2.1,54), This gives

- fos Fxxi§enxd)
= o KXKk b+ kX
K
=3 (- KXEkE T xT) (2.1.55)
K k. Kk .
> j -_ >~
H =9 EkXJ (2.1.56)
o ;2 1

Equation (2.1.55) can be written in rectangular components as follows:

/ I 1 L ] -—"~ ~._\T
(K -K )k k =jK k k k J -k J
. o 2 3 13 22 3%
~ % ’y k;“%‘kﬁ‘b‘kw 1 1A) ~ ~
i = J fl X 2y 3 Z |- « _Ko)kk-ijk3+ kst—liz (2.1,57)
© Kakik® | K P4k )+K K 13 2
1 2 3. |- 1 2 03
[} ~ P
. 2 2
K (k“+k®) k J -k J
K ( 1 2 1y 2 X
k - - - — J
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It can be shown that this low frequency expression for ﬁ; is identical to
Equation (2,1.51) (i.e. E; = §0)° The advantage of this derivation is
that it displays the low frequency magnetic field as the sum of two terms
(see Equation (2,1,55)), the first term being identically zero in isotropic
media and the second simply a statement of Ampére‘s law for direct
currents, The meaning of the first term can be clarified be relating

it to the induced current which flows in the medium due to the quasi=~

static electric field, Equation (2.1.21) shows that

=_Jwe°§ - 0 E (2.1.58)

in which O is the conductivity tensor, If the electric field Eo induces

a current density 31 in the medium, 31 is given by




The induced current is

seen to

consist of two parts;

- jwe

=il

25

(2.1.59)

the first part is

irrotational only when K is a scalar and the second is always irrotational,

The magnetic field resulting from the gquasi~static induced current is

given by

R

il

el

k

-j E)(K k
k2 k -

(2.1.60)

This expression is exactly the first term of Equation (2,1,55) which now

may be written

(2.1.61)
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The existence of an induced magnetic field ﬁi in the low frequency limit
suggests that unusual electrcmagnetic¢: effects may be predicted by quasi-
static theory when it is applied to problems in anisotropic media,
Propagation effects in magnetoplasmas. and ferrites have been described
9,10

in the literature in connection with source-free problems; a problem
which includes sources is the subject of this report and it will be shown
in Sections 2.3 and 2.4 that the quasi-static theory preditts a form of
radiation.

The low frequency behaviour of the field quantities may be
summarized by noting their proportionality with respect to frequency

when expressed in terms of an operation on an assumed current density J:

1 1
LlJCﬁ a’ E o -w- )
(2.1.62)
A = const,, H = const,

The infinities in { and E at w = 0 arise from the fact that J is assumed
to remain constant as W— 0, It would be more realistic to base field
calculations at W = 0 on some assumed charge distribution, Since an

oscillating charge distribution P is related to a current distribution by

the equation of continuity

V-7 +jwup=0 (2.1.63)
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it is clear that an assumed charge distribution would produce a finite
VU and E at w = 0,

The existence of quasi-static field expressions suggests that the
Poynting theorem might also be expressed in avquasi—static form, The

Poynting theorem is often written as follows:

—_ -k — S —_ — * —, =3
E . J dv = jw (E + D - B °I{*) dv - (EX}{)» ﬁ ds (2.1,64)

In the quasi-static limit the relations of Equation (2.1,62) indicate that
S
the B - H term is negligible. A more useful limiting form of the

Poynting theorem may be derived by substituting

E=- V- jwA (2.1.65)

in the surface integral, This gives
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The first surface integral can be simplified using the vector indentity

VUxE = vxy E -y uxH (2.1.67)

and the conjugate of one of Maxwell's equations,
—
VxH =-jwD + g (2.1.68)

If it is assumed that J = 0 on the surface S, Poynting's theorem becomes
(2.1.69)

T — - —% = — T
E. Jdv = jw (EOD-B°H)dv + Jw (¢D+Axn)-ﬁds

\4 \'a '8

In the quasi-static limit the relations of Equation (2.1.62) indicate that

— % - —%
the B - H and AXH terms are negligible, Thus a quasi-static form for

Poynting's theorem is

|
¥*
5>

ds (2.1.70)

<
<
7]
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This formula is similar to the well known energy expression to be found in
textbooks on electrostatics. A similar formula for the magnetostatic limit
may be derived if H is expressed in terms of a magnetic scalar potential,
_The surface integral of the magnetostatic formula gives a result identical
to that obtained by Trivelpiece and Goulf in their equation numbered
(A.10).

The quasi-static field equations and Poynting theorem discussed above
constitute a body of theory sufficient for a study of the near fields of a
shoft antenna in a magnetoplasina, Before proceeding to the antenna
problemﬁ it is worthwhile to examine the form of the quasi-static

‘differential equation. Equation (2.1.9) may be expressed as

LIJ % llJ o kp :Tmi (2c1571)
: o]

K
h = 2=
where a R

Let us consider the lossless case in which both K? and K0 are real, Some
information about the potential Y may be obtained from a study of the
chafacteristic surfaces of the above differential equation (see
Sneddon14, for instance). The nature of the characteristic surfaces

2

depends on whether a“ is posltivé or negative; the equation is elliptic

when a? is positive and hyperbolic when a® is negative (see Figure 2.1.1),
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An elliptic equation has complex characteristic surfaces and thus no
physical significance can be attached to them. A hyperbolic equation
has real characteristic surfaces along which discontinuities "propagate’
(i.e. cannot vanish), Thus under hyperbolic conditions any discontinuity
in ¥V ° J will cause a discontinuity in the electric field (-V ¥)
extending outward from the region where the source current T is
localized,

The equation of the family of characteristic surfaces may be derived
easily by writing the quasi-static differential equation in cylindrical

co-ordinates for the axially symmetric case, If r is the radial variable

and 2 is the axial variable, Equation (2.1,71) becomes

(2.1.72)

The equation for the characteristic surface as given by Sneddon is

‘2

. 1
z2 sog 1 =0 (2.1,73)

in which the dot represents'differentiation with respect to some parameter,

L3

The solution is
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z= + J % r + const, (2.1.74)

which represents a family of cones when a’

is negative, Therefore any
source discontinuity at a point will result in a conical field dis-
continuity emanating from that point. Under hyperbolic conditions

the field of a short dipole should contain three discontinuity cones,
two emanating from its ends and one from its center, These'congs are
evident in the field formula to be derived in Section 2,2, Thus the
most prominent feature of the field solution\has been obtained without

a detailed solution,

2.2 The Field of a Short Dipole

As shown in Sectiqn 2.1, the quasi-statie differentiél equation 1s
K 1
O ¢yy) + K°¢zz =- ¢ (2.2.1)

Q

.‘This may be written as

bbb = = gy, = s (2.2,2)
a




The solution will be obtained using the Fourier transform pair
Jk.T

f (r)e dx dy dz

(2.2.3)

£ (F) = —m T @ e T 4k dk ak
:(277)3 1 2 3
’ 00

The tramsforms can be used to.solve Equation (2.2.2) and the solution can

be expressed as

jk-r
y () = I‘“‘ a (e dk dk dk @
3 .2.4)
€ K (27) k + kz + _1: 1 2 3
az
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The transform of the chargeydistribution is

N _ -J(k x + k y+k_2z)
q (k) = q (r)e A 2 3  dx dy dz (2.2.5)

This can be written in the (u;y,v) coordinate system as shown in Figure

2.2.1., Both T and k can be transformed as follows:

X=usin ® - v cos 6

Z=ucos O + v sin @ (2.2.6)

1

k = klsin e + kacos e
1]

k =—k1cos 0 + kasin 0 (2.2.7)

~
Now q can be expressed as

"

]
~ = -j(k u + k2y + k v)

q (k) = q (u,y,v)e du dy dv (2.2.8)
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The co-ordinate system

Figure 2.2.,1
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The dipole field will be derived from the filamentary, triangular
current distribution shown in Figure 2,2,2, The corresponding charge

distribution is obtained from the equation of continuity,

: L
1 (M= -5 gp SO BW
= %co_l: T(u) 6(y) §(v) (2.2.9)

The function T(u) is shown in Figure 2,2.3, The transform of the charge

distribution is

-2 (2.2.10)

This can be substituted into Equation (2,2.4) and integration will result
in an expression for the potential \, However, for impedance calculation,

the electric field parallel to the current (Eu) is required,
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Figure 2,2,2 The assumed current distribution
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Figure 2.2.3 The charge distribution
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[A]

T
Jk u+k2y+k v)

o0
t 1
= L (e'jk L, edk L-z) g dk dk dk
jw(2m®€ K L K2 23
o v 3

LR S

1 2 a2

1

= ——— I + I - 2I (2.2.11)
meEL [ Ty * Tewy ™ 2ol
o
The integral I(L) can be expressed as
(2.2.12)

j[k (x-L sinB) + k y + k (z~L cose)]
1 2 3

o0
.= € dk dk dk
(L) (2m)3 9 . kg 1 2 3
kK + k¥ + ———
=00 1 2

Employing a transformation to cylindrical coordinates

x - L sing = pl cos¢a k =y cosM
y = sin k = sinM

pl (Pl 2 Y

z -~ L cos@ = z k =k

1 3 3 , (2.2,13)
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we can write

1 3 J[ypcos(ﬂ-¢)+kz]
Ly — e 1 ! S yamayak ¢
(2m) K2 3
-0 ., 0 O Yz + _l
T2
a
© o0 jk =z
31 J (ypP)
= 2 e °© 1 Y 4ydk (2.2.14)
(2m)? k> s
-0 0 Y o+ -—23-

since

1 jy p cosM- @)
J (y p1)= — f e 1 L (2.2.15)
O
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The next step involves contour integration with respect to ka.

It is convenient to designate by. 'a'"'.the square root of K'/K which
o

has a positive real part, howevér small, Under lossless hyperbolic

conditions (a® negative with ¥=0) the correct choice for "a" must be

made by taking the limit as the collision frequency (v) approaches zero,

The contour integration gives

©  jk =z 0 Jk =z

1 e 31 dk _ ii. e 31 dk
2m 12 3 27 (k3+ Jay) (ks-.ja‘v ) - 3

SRRV e 5 2o ‘

a2
~-ay |z1|
= 2 & (2.2.16)
2 Y

The integration contours are shown in Figure (2,2.4)
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is used for z
1 2

positive and C for z
1

negative,

Integration with respect to y completes the evaluation of I(L)°
= o3
a ey lzll
Tw™ @ | ° To(vpy) dy
o
I 2 2 (=% (2.2.17)
=7 Gﬁ + a z1 )
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Similar expressions for I(;L) and I(o) may be derived. Using the
nomenclature
Pi = (x-L sin@)? + y® z =z - L cos®
1
pz = (x+L sing)? + y2 z =2z + L cosf
‘ 2
2 .
PP = 2 4yl z =z , (2.2.18)
o o)

we may express the electric field parallel to the dipole as

’
1 1
E — a - _____2___,._‘ (2 ]

= +
T
j wam € K L pi,_+a2z2 p*+ a® 2 P? + 2% =
1 )

Nt

1o
;—l

Under lossless hyperbolic conditions (2?2 real and negative), Eu be~

comes infinite on the surfaces pi + a2 22 = 0, ﬁﬁ + al z? = 0, and
1 2 2
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pi + a’ zi = 0. These surfaces are cones emanating from the ends and
center of the dipole. Their discovery was anticipated by the discussion
of the differential equation characteristics in Section 2.1. In addition,
inspection of Equation (2.2,19) shows that phase shifts across the conical
surfaces occur under hyperbolic conditions.

2.3 The Impedance of a Short Dipole

For an input current of unit magnitude, the input impedance of an

antenna with a conducting surface is given by

Zmn= - J . E ds (2.3.1)

where S is the antenna surface. In this formula J is the current density
on the antenna surface and E is the electric field at the antenna surface
when the conducting material in the antenna is removed. This impedance
formula may be derived using the ''reaction concept’ and such derivations
have been discussed recently by Richmond!® for isotropic media, These
derivations are based on the Lorentz integral relation between any two

solutions of Maxwell's equations (the solutions are numbered 1 and 2):

(Ex H - ExH) - nda= (J-E-E-ﬁ2-3.§+i-ﬁl)dv (2.3.2)
2
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where J and K are electric and magnetic current respectively. This relation

may be written for a magneto-ionic medium only if the sense of the magnetic

field is reversed for one solution (say number 2), If the volume V is

the entire space exterior to the antenna, the surface integral at infinity

vanishes and there remains

nds =0 (2.3.3)
1 2 2 1
S
where 8 is the antenna surface (see Figure 2.3.,1), If 55(ﬁi = El and
-nXE = K , then
. 1 1
K.H ds= [|J -E ds (2.3.4)
i 2 1 2
Sv
If the gap is narrow,
K.H ds =-V I (2.3.5)
1 2 1 2
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where V and I represent source voltage and current. If J = ch J and

Ilz I = I and the input impedance is defined by Zin ====_ then
2

Z2 =-— f§ T 8 ds (2.3.6)

which reduces to Equation (2.3.1) for unit source current, Since solution
2 requires reversal of the DC magentic field, 32 must be calculated under
such conditions, TE gt the gap is completely determined by the source
current and thus is unaffected by the DC magnetic field reversal. However
in the quasi-static theory for an infinite medium all solutions for the
electric fiéld are independent of the sense of the DC magnetic field, Con-
sequently in the impedance calculations to follow; Equation (2.3.1) may
be used just as it would be in free space.

The impedance formula for unit input current (in the (u,y,v) coordinate

system) is

Z = - E d
in Ju u »s (2.3.7)

@

Transformation to a cylindrical (u,r9¢0 coprdinate system (as in

Figure 2.3.2) gives



ANTENNA
SURFACGE

>

Figure 2,3.2 The cylindrical co-ordinate system
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y =rcosp , v =r sinp

If the current is spread uniformly over the antenna surface, the current

density is

& (x=p) for u> 0 (2,3.8)

2 = & (r-p) for u< 0

In order to simplify the calculations; one can obtain an expression for
the impedance of a monopole of length L. The impedance of a dipole of

length 2L is just twice the monopole impedance, The monopole impedance is

o

2T L
1
zin = - 57 f (1-" - ) E, (u,p,P) du d¢ (2.3,9)

and E  (4,0,@) is given in Equation (2.2,19). In the cylindrical



coordinate system,

©
- o
it

o R
I

N N
i I

N
]

The expression for Eu may be simplified by introducing

Q
]

e
i

[ (u-L)sing - P cos® sing ]2 + [P cos¢>]2
[ (utL)sing - P cos® sing ]2 % [p cos¢ﬂz

[ u sing - P cosd sin¢)]2 + [p cos¢ﬂ2

. (u-L) cos@ + P sinB sin¢

: (utl) cos® + P &ind sind

u cosf + P sin@ sing

1+ (a2~1) cosze

. 2p (a®-1) sinB cos® sing

pz[l + (a%-1) sin®@ sin2¢ﬂ

50

(2.3,10)

(2,3.11)

(2.3.12)
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Thus,

pz + a? zz = F(u-L)? + G{u-L) + H

F(u+L)? + G(u+l) + H

0 Qo
+
oo
N
1}

o
+
®

(Y]
N
1]

Fil + Gu + H (2.3.13)

The monopole impedance is

2T

-a
Z, = — e (I + 1 =21 ) do¢ (2.3.14)
In 4o o4m€ K L 2m f 1 2z 3
[o)
0]

where

L (l u)d
- — u
I = L

¢ \J F(u=L)? + G(u=L) + H

(2.3,15)

a=0

2 ¢ 1
N NFa ‘*"Ga*ﬂ-uﬂ@_—ln o NF(F a4 G a + H) + 2F a+G

L F 2F
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L u
- = Jdu
(1 L)

I
2
\J F(u+L)2 4+ G(u+L) + H
o}
d a=2L
; 2
__LMNFafsGa e H G 1, |5 NFFa%s Ga sH)s2Fa 4 G
L F 2F (%
a=L
a=2L
1 /\I 3 .
4+ 2¢{ = 1n |2 NF(Fa® 4+ Ga +H) 4+ 2Fa + G (2.3.16)
N
- a=L
L (1- E)du
I < _—
3 _
f\IFu2+ Gu + H
O
a=L
1 F a2, )
S i{NFoeGaxH G L[5 \[F(Fa?+ Ga + H) + 2F asG
L 2F
F F
a=0

az=L
1
+{ i ln[z AJF(F als G a + H) + 2F a + G] (2,3.17)
F

a=0




In order to make the expressions more compact, let

N

M

@) Qr'a2+ Ga + H

(@)

2 dF(F a?+ Ga+ H + 2Fa +G

The sum of the above integrals is

I+1-21-=
i 2 3

If it is assumed that p << L; then the above formula can be greatly

simplified:

-1 ,
L [SN(O) - 3N(L) + N(2L) - N(—Li]

M(0)® M(2L)
M (L) M(-L)

n

C =1
2L ' T

M(o) M(2L)

NF M (L)

53

(2.3.18)

(2.3.19)



54

(2.3.20)

F T
I+1I-21 = 2_ [l—ln EL 4+ 1ln (EMH—(az =1)sin’@ sin&(P +(a?=1)sing cos® sin¢)—_|
1 2 3 F
Substitution of the above in Equation (2:;3.14) gives

2T

Z = 2 In = - 141nF- 2= 1n(d§’41+(a11)s1n29 sin?¢

; v
T jezme X L NF 2m

+(a?-1)sin@ cos® sin¢9déﬂ (2.3,21)

It can be shown that

27
1 : e 1
7 f;f(slnngy sing) d¢ = =

o]

[f(sin2¢ ,-sin@) +£(sin’ ¢, sin¢»] dp (2.3.22)
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from which

21
1 1n(,ff,\ll+(a2-1)sinze sin + (a®~1)sind cos® sin¢) d¢

ﬂyz
1n F[l+(a2-1)sin29 sinqu] - (a%®-1)? sin’p cos?e sinng do

]}j=

Substitution of the above in ‘Eduation. (2.3.21) gives

a

s F]
T juame K L NF

(2.3.24)

1

K
where F = sinze + azcos2e and a2 =%
o]

This formula gives the input impedance of a short, thin monopole making an

angle 6 with the DC magnetic field. Two special cases are of interest,
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6 = 0 (monopole parallel to EDC) and 0 = ﬂ/2 (monopole perpendicular to

HDC) .

Parallel case:

Z = 1 - I:lnil)f -1+ 1n a] (2.3.25)
n Jozme K L

Perpendicular case:

2 (2.3.26)

1
In free space (K0 = K

1) the above impedance formulas reduce to

2, = - [ln L. 1] (2.3.27)
W2TE
Jo2ue L

which can be found in any discussion of short, cylindrical antennas
(Schelkunoff andFr’iisE'6 for instance),

It 1s interesting to observe that impedance formula, Equation (203024),
can be re-written in the same form as the free space impedance (Equation

(2.3.27)) if the dimensions L and P are suitably scaled, That is,
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2, = —— [ % -]
b jueme L P

where

1 1 v
L =1L J;— Jko sin?g + K cosze

and

The significance of this scaling will be discussed further in Section 2.5.

The above impedance expressions all contain the logarithm of a function
of "a", When the medium is lossless and hyperbolic, the logarithm produces
a positive, real part in the input impedance. This indicates that the
antenna transmits energy irreversibly into the mégneuiplasmavq It will be
shown in Section 3,4 that this energy transmission is in fact a form of
radiation,

Numerical impedance calculations will be presented in Chapter 3 along

with the experimental results,

2,4 The Poynting Theorem and Calculation of Radiation Resistance
The radiation resistance of an antenna can be obtained by integrating

the real part of the Poynting vector over a closed surface surrounding the
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antenna, Since the duasi-static theory for a lossless plasma predicts a
dipole impedance having a positive real part, this real part should be

the radiation resistance, Therefore, as a check on the impedance calcula-
tion, it should be possible to compute an idéntical radiatioﬁ resistance
by integrating over a surface at an arbitrary distance from the antenna,
In addition, it is important to establish that the total outward powér
flow is independent of the distance between the source and the surface éf
integration; this assures that the power flow has the characteristics of

. X . . . 1
radiation and no* of "intrinsic 1oss“1

(apparent power dissipation in.a
finite lossless region),
It is necessary first of all to write the Poynting theorem in a

form readily applicable to quasi-static analysis. Equation (2,1.60) is

in such a form and is repeated here for convenience:

- — — —%
E-J dv=gjw [ED dv+ jo J$UD - A ds (2.4.1)

In quasi-static theory, the addition of a constant to the écalar potentiai
} leaves the electric field unchanged  In Equation (2,4,1), the addition
of a constant to ¢ leaves the equation unchanged provided that there is
zero net charge within the surface S,

Let us now compute the outward power flow from a short monopole

(or dipole) which is oriented parallel to the DC magnetic field. This
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restriction simplifies the computation whiie preserving the essentiél
features of the analysis, The outward power flow P through a surface

8 is given by

p=-3 | VD' 4 as | (2.4.6)

in the quasi-static limit, For a monopole, the surface 8 can be a

closed cylinder as shown in Figure 2,4,1, For P to have a real part, the
product Y B*. © must have an imaginary part., This can occur only under
hyperbolic conditions and then only bet&eén the chafacteristic cones
emanating from the ends of the antenna, Thus P will have a real part
only over the shaded region of Si, The surface &2 can be removed to
infinity and then neglectéd, at least for the computation of real power
flow, -

The necessary field expressions are

a 1 1 ' 2
M| *

, - (2.4.7)
\IP2+§(Z+L)2 4P2 +a% (z-L)2 Alpz +a? z?

Ez(p, z) =
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Figure 2.4,1 Radiation fields of a monopole
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L . ,
b @,z) = 3—; f L . - du - (2.4.8)
| \]p2+a2‘(z+u)2 \Jpz-l-az (z-u)?

[¢}

‘ t
where M = Q4ﬂ€bK L

The power flow through 81 is clesigmanted‘P1 where . .: -

. A
P =-jwf Y D R ds (2.4.9)

oo 20

-Jw€ K ff ye(, z) E: P,z) pdp dp
(o3 o]

o0
- QI Y@, 2) E: ©,z) dp?
(o]

where

= -jwT€ K
Q IXEE B
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L, c©
pl = ina.‘_z_ff . 1 _ 1 1 + 1
e &4 \]Pz+a2 (z+u)? \Ip2+az (z-u)? \fp2+a2 (z+L)2 /\Izz.paz (z-L)?

p2+a2z

2
= - g—lil— 2 I, du where i=1,2 and j=1,2,3 (2.4.10)

M i3 M

Here, Iij indicates an integral formed from one of the six products in-

dicated above., In general the real part of Iacomes from the imaginary

2

parts of the integrals I Imaginary parts arise when a® is negative
i

3

2 - -C?) and over a limited range of the variable pz_ For instance,

(say a

consider the integral I11

(2.4,11)

o0
. ' 2
A t\lpz—Cz (z+u)? (,\l;z_cz (z+L)2)




It is evident that the imaginary part of I1 is given by
1

p2 =C2 (z+L)2

, dp?
K
l\rpz -C? (z+u)? (I\) p?-C? (z+L)? )

J 11 5

p? =€ (z+u)?

P?=C? (z+L)2
I po 2 |
=j 2 tan p_______-cz (ztu).
& (z+1)2-p*
| P?=C? (z+u)?
=32 l:t.aﬁ-l w - tan"o-]

4+J nT  where n is an odd integer

It can be shown readily that Ip I21 = - Im 111’ ImI =-ImI
. ven 2

Im =+ ImI ., Thus .
23 13

12

2
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(2.4.12)

(2.4.13)

and
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j Im 2 I .

2§ ImI ' (2.4,14)
13

P?=C? (z+u)?
dp?
*
Jpz -2 (z+u)? (.j p?-c2 22 )

[)2=sz2

ap?

\l & (z+u)? -p? \Ipz -C 22

= + n 437 where n is an odd integer:; (2.4.15)

The correct value for + n can be determined by introducing a small loss

and observing the locations of the points pz=€2 z2 and p2=C2 (z-s-u)2 in the
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. 1 1
complex pz-plane. There are two cases of interest, K< o and K > o,
These cases correspond to the two hyperbolic regions in a szs. X graph

(compare with Figure 2,1,1):

K'>0

? | \ K=o

X ——p—

In the complex pzéplane, the real axis is the path of integration, If
! 2 2 » !
K > o the points c?z? and Cz(z+u) are below the real axis, If K <o,
the two points are above the real axis, Thus the imaginary part of the
) '
integral (the "phase change') is negative for K > o and positive for
1

K ¥ o, In addition the total phase change of the integral can be no

greater than 7 in magnitude so that n = 1,

: ,
Thus J Im X I ajm iIf K > o (2.4.16)

i3

1]
-4 3% iIfK <o

i

If Pr is the real outward power flow through the surface Sl’
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L
2
p - -Yal® o 5 I, .du (2.4.17)
r M ij
o
) 2 . !
=-!M-(i4jﬂ)L +signforl(ﬁ>o
- sign for K< o
-(cdume K ). '
L. 0 0,

= -2 2 . --lé—- (14Jn) L
(wam€ K L)2 o

- —1 (2.4,18)

?
4WLE |K |
o]

If the input current is unity then the radiation resistance is given by

Rrag = —L (2.4.19)

4wLE |K |
)

From the former impedance calculations for a monopole we have
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Re(z, ) = — 22 (2.4.20)
jwszOK L ‘
t
+ 7/2 + sigp for K> o
= T N
JwZHGOK L - sign for K< o
1
= t
- 4wLE |K |
0 .
= Rrad’ (2.4.21)

It has been shown that the real power flow is independent of the height

"z" of the surface S1 and that the radiation resistance is equal to the

real part of the input impedance.‘ This indicates presence of a mode of
radiation which is most unusual because it can have a pronounced effect even
for a very short antenna, The explanation for this phenomenon was suggested
in Section 2,1 where it was'shown that an irrotational electric field in-
duces é magnetic field in azdmagnétoplasma” making possible electro-
magnetic effe¢ts such as radiation, However it remains to be shown that it

is the induced magnetic field ﬁi which is totally responsible for the real

part of the total outward power flow P, This can be done by writing

P = EXH: . A ds (2.4.22)
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and using the quasi=-static electric field together with the total low

frequency magnetic field. The 1atter is given in Equation (2,1.81) as

kxJ (2.4.23)

Evaluation of Equation (2.4.22) for the case of a monopole parallel to
the DC magnetic field gives the same integral already evaluated
(Equation (2.4.10)). Furthermore the real part of the outward power
flow arises entirely from the induced magnetic fieid'ﬁie
2,5 Derivation of the Impedance Formula by Dimensional Scaling

Consider the problem of transforming:the anisotropic differential
equations into equations having the same form as the free space differential
equations, In the quasi-static theory three equations are important, any

two of which are independent. They are

: f—3 - q—
Kl <pxx + Kz ¢yy + K3¢zz = Go (2.5.1)

(2.8.2)

i
o

Ved+ jwa

7 - J (2.8.3)

[}

K1¢&x + K2 ¢ + Ko

vy 3'22 Jw€

e}
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where Ka, Kz’ K3 are the relative permittivities in the x, y, z coordinate

directions (respectively), q is the charge density and J is the current
Jwt

density, A time factor e is understood.

Dimensional scaling of the following form will be considered:
x!' = a X’ y' = B y, z' = Y z ., ' (2.5.4)

In order to transform the "anistropic Laplacian”" into an "isotropic" or

ordinary Laplacian, it is required that

K¢ +K¢ +K¢

17 XX 2'yy 3'zz

n

C @t * Ppryr ¥ Ppe ) (2.5.5)

cA @

where C is some constant, Substituting the scaled variables on the left

side and equating the coefficients gives

1 - 4j—= 3‘ = l (2.506)
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ar

y C C €
(12 =E— s 52 =K—‘, Yz ="ﬁ"’ (2.5.7)
1 2 3

After transformation, the divergence of the curfent density becomes

V. J=aBy V.T (2.5.8)

Equations (2.5.1) and (2.5,2) can be expressed as

<'2.5.9)

Q
>
©
1
o™

aByV: T +3Jwqg=0 . (2.5.10)

If it is assumed that C and a § y are not zero, Equations (2.5,9) and

(2,5.10) become

A ¢= -—-q— (205011)
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=0 (2.5.12)

These can be reduced to the free-space form if ® and q are suitably

transformed, say to @' and q',
q = % (2.5.13)

wq'= afpy (2.5.14)

It is necessary to put some restriction on the frequency and charge
scaling, First let it be assumed that w'=w (frequency-invariant scaling),

Equations (2.5.13) and (2.5,14) give
C= afBy. (2.5.15)

Equations (2.5.6) and (2.5,15) can be solved for a, $, y, and C, giving

a = |[KK = |K K = |K K Cc =3 KKK . (2.5.16
alzs’ ‘3\]13’ Y'\l12’ AJ123 )
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Now let it be assumed that q' = q (charge-invariant scaling), It

is apparent that

C=1 (2.5,17)

and from Equation (2.5.7),

= C = . (2.5.18)

To summarize, there are two principal types of scaling, one frequency-';
invariant and one charge-invariant,

a) Frequency-invariant scaling:

x' = KLZK3 X W o= w (2,5.19)
q
[ - K ' =
y NG Y 4 KKK
12 3
z' = Ix K z
N 12

b) Charge-invariant scaling:

x' = x/‘x w? w |KK K (2.5.20)
1 1 2 3
y' =y/|K2 qQ' = q
z' = z/ K
’13
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Either of these two methods of scaling converts the equations of free-

space forn

g
Af¢= - .cel_. (205021)
[o]
AR LI jw q =0 (2.5.22)
Np= —— ¢ T (2.5.23)
ot €
(o]

to Equations (2.5.1), (2.5.2), (2.5.3), respectively, Since frequency
(rather than charge) appears explicitly in the quasi-static impedance
formulas, freqqency-invariant scaling is to be preferred,

For a magnetized plasma with the DC magnetic field oriented along
with the z axis, the scaling is somewhat simplified,

a) Frequency-invariant scaling:

X ﬁ'\IK no X W o= W (2,5 24)
y' = |K'K y q' = 4
e} K%K
(o]
z! = K z

b) Charge-invariant scaling:
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x* = x/ {K° w?

& JK_ (2.5.25)
y/ﬁ q'

‘<¢)
i
1

e}

z' = ngrE;

By means of scaling, the quasi-static differential equations may be
transformed into free space equations, If the scaling.is applied to the
dimensions of a cylindrical dipole, the equivalent free space dipple can
be shown to have an elliptical cross section (for the case of real, positive
scale factors). This free space dipole, in turn, has a free séace equivalent
with a circular cross section, Thus the impedance of a short dipole in an
anisotropic medium may be found by a simple scaling of the well-known
results for cylindrical antennas in free space, The details of this
approach to the problem will be worked out in the following paragraphs,

Frequency-invariant scaling will be employed. The scale factors are

given by
x' = |K'K x y' = |K°K y z' =K'z (2,5.26)
The co~ordinate .system is shown in Figure 2,5,1,

The length scales easily. If x', z' are the projections of the

scaled length L' and x, z are the projections of L, we have
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Figure 2,5.1 The co-ordinate system in the magnetoplasma
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Lt =»lx*2 + z'2 =JK' "lKo 2 + K z2

, =4 K ’\lKo sin?0 + K' cos?@ L (2.5.27)

The radial scaling is somewhat more involved, The circular cross

section of the dipole is given by the equation

vV sy = p? (2.5.28)
where
u= 2 cosf + x sing
v = z sinB ~ x cos® (2.5.29)
After scaling, the above cross section equation becomes
1 [} 2 t2
z' sing _  x' cos@ + X - pz (2.5.30)

] i
O E, K'E,

The co-ordinate system is shown in Figure 2,5,2, The co-ordinate trans-

formation (x‘,z‘)-—»(u',v') is given by
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Figure 2.,5.2 The free space co-ordinate system



x'

The relation between 6 and eo is

X
tang = =,
o) z
or
sing
o)
or
cosB
o

u' cosf + v!

0

sin@
o)

u' sin@ - v' sind
o o

lo

Nopg

JE; sing

o

tang,

J Kosin2 8 +K'cos?@"

- AFET cos O

JEOSinze + K'cosze

Now the cross section equation becomes

\%

12

Kosinze + K' cos?e

Ki

2

K

o]

+

2

K'K
o]

« P
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(2.5,31)

(2.5.32)

(2.5.33)

(2.5.34)

(2.5.35)
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orxr

v ¢ —L— =1 (2.5.36)

/\I Kosin26 + K! cosze

This is an ellipse with semi-axes

1]

A= RKR:'AIT"- B= p ,lx' K_ (2.5.37)

f\jKoSinze + K! 00526

Thus there exists an equivalent free space dipole having an elliptical
cross section,
Y. T, Lo® has shown that a dipole with an elliptical cross section

has an equivalent with a circular cross section, the radius of which is

to

given by pP' = —%— . Thus the radial scaling can be written as

o>

K' A[K
P! =§ , /\r"_ +4]K'Ko : (2.5.38) -

4 Kosinze + K' c0526
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The impedance of a short cylindrical monopole in free space is

usually expressed (see Schelkunoff andEwitsS as

1 L'
zin = —— [1n 57 - 1] (2’5939)
v Juwm€ L'

When L' and P' are transformed as indicated above, the formula becomes

Z = 1 ln*E -1
In [ 2 2 P
- [ € 1 H
Jw2u€ L ﬁ leOSin 6 + K'cos“0
2(Kosin26 + K'cos?9)
+ In (2.5.40)

' 2 1 2
/\1?0(4]( +,{Kosin 6 + K'cos 9)

This formula could have been derived using charge-invariant scaling,
which involves the slight additional complication of a frequency scale
factor. The above expression is identical to the one obtained by solving

the anisotropic source problem without recourse to scaling,

2,6 The Effect of a Cylindrical Current Assumption on the Computed Impedance

The analysi5 in the preceding settions of Chapter 2 has uncovered
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unexpected phenomena associated with lossless, hyperbolic conditions in
the :magnetoplasma, The field of a short dipole exhibits infinite
discontinuities.and its impedance has a real part, indicating radiation,
Since such a phenomenon may be caused by a poor choice of current dis-
tribution, this section and the following one are devoted to analyses of
two different current distributions, This section considers the tri-
angular current to be spread over the cylindrical surface of the dipole
rather than being concentrated in an infinitesimal filament along the
dipole axis,

For the sake of simplicity, both the dipole and the DC magnetié
field are oriented in the z direction, Because of cylindrical symmetry,
the differential equation may be expressed in cylindrical co-oxrdinates

as

\IJ +% Ll) + }-— LlJ = - 4 (2a6a1)

This equation ls to be solved with the help of the transform pair

o 0
¥(k,<y) = ff f(z,r) e Ik= Jo(yr) r dr dz (2.6.2)
=0 0
© ®
f(z,r) = % ff }(k,y) Jk2 Jo(‘yr) y dy dk (2.6.3)
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If the differential equation is transformed; solved algebraicaliy and

re-transformed, the potential can be expressed as

o0 ©0
y(z,r) = "5 % .’..’. 9 Gy Jkz 4 (yr)y dy dk (2.6.4)
K2 o
. 2 Y= |
a

In order to find Z, it is necessary to consider a current distribution J
which is spread uniformly over a éylinder of radiys P, The corresponding

charge distribution is

‘ 1 9 J(z) §(r-p)

! 1" 7« Tz 27p
i
I S(r-p)
=g T@ 270 (2.6.5)

for which the function T is shown in Figure 2.2.3, The transform of q is

~ 1 -JkL _  JKL |
Q0 Y) = g (e IKL o KL 2) 3,0¢P) (2.6.6)
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The potential Y at any point (z,r) now can be expressed in terms

of an integral,

(2.6.7)
0 0
- JKL KL _ |
Y(z,r) = — oz ® 25 (ypiel*%y (yr)y ay ak
(2T)2wE K'L 2 ° °
© 0 o k( + %T)

For impedance calculation, it is necessary to have the ¢lectric field in

the z direction at the dipole surface (r=pP).

K2

0 o0
E,(2,p) = —— 1 eIy I 2 TR v ay ak 2.6.8)
(2m)? jw€ K'L L 2
- a2

If the integration with respect to k is carried out as in Section 2,2,

Ez becomes

o0

-avy|z-L}| -avy| z+L} —ay|z]
E_(z,p) = 4ﬂjw20K‘L (e Y + e Y -2 e %Y Ji(y p)dy (2.6.9)

The following integral relation can be used tosimplify. - the calculations:
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o0 /2 ,
‘[e..!;Y Ji (y p) dy =% dp (2.6,10)
o y !\LI?a + (2pcosd>)2

Now Ez can be expressed as

n/2
a . 2 1 i 1
amyE KL T

E (z,0) =
z
by '\]az (I.a—z)z-lo'(zpcosgb)2 ;\]az (Law.)z-a-(zpcos(P)2

- 2 1 4 @6
'\l a? zz+(2pcos¢)2_|

The expression inside the integral sign now has the same form as Equation
(2.2.19). Integration with respect to ¢ can be delaygd while the impedance
calculations are carried out as in Section 2.3,

The impedance of a monopole is given by

L
Z
z, =f(1- T ) E, p,z) dz. (2.6.12)

[o]




85

If the integration with respect fo 2z 1s carried out and if the assumption
1s made that (2Pcos®)?® << ( |a|L)?, the following formula may be written

by analogy with Equation (2,3.25):

/2 :
1 2 L .
2, = JoEme KL T [m 2pcond L% 1ln a:| d¢ (2.6.13)
(o]
However,
/2
;2; 1n(2Pcosd) d¢ = 1n P (2.6.14)
]
Thus,
1 L
z1n=3'5§?r'€;ﬁ En i 1+ 1n a] (2.6.15)

which is identical to Equation (2.3.25). It may be concluded that the

assumption of a filamentary current (in Section 2,2) introduces negligible

error in the impedance calculationm.

2.7 The Effect of a Smooth Current Assumption on the Computed Impedance

The field solution for a triangular current distribution contains

-infinite discontinuities along the characteristic cones emanating from the
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ends and center of the dipole (see Equation (252,19)); The discontinuities
in the field are closely related to the current discontinuities at the
source, In the following calculations, the current distribution chosen
is filamentary but has a continuous first derivative at the ends and
center of the dipole,

For simplicity, both the dipoie and the DC magnetic field are ordiented
in the z direction, If J and q represent the corresponding current and

charge distributions, it is assumed that

22 Zs
for z>0 J = 06(x) 6(y) |:- 3 — 4+ 2 - (2.7.1)
1.2 L}
6 6 () z
= 1 -~ — 2.7.2
q or? 270 z ( L) ( )
22 Z3
for z < 0 J=06() 6(y) [1 ~-3— -2 — (2.7.3)
12 L3
_ 8 5 (@) z
q = — 2P z (1 + I ) (2.7.4)

Jor?

The transforms to be used are
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% %
Ty, k) = ff £(p,2) e I® I (yP) P dp dz (2.7,5)
%%
Er
£0,2) = 5= ff?(y,k) o925 (v0) v ay ax (2.7.6)
Lo o0l AT |

The transform of the charge distribution is

0 ’ L
q= -8 f 2z 1+ %) e K2 45 4 z(l- %) e "IKZ 4y (2.7.7)
JwamL? S

After combining the two integrals and integrating by parts, one obtains a

convenient form of q :

| L , .
a= = L L a3 (@ e  (2.7.8)
wﬂl?. ) _
' o

The electric field parallel to the dipole can be obtaingd by a
transform solution of the quaSi-static differential equation, The method
i#iﬁentibal to the one employed for the previous field computations for
a triéngulér current distribution, The inverse transformation is carried out

as follows:



E ©,2)

E_(p,2)

=

88

© oo .
- k g I 5 oy v a _
21]'60}(7 2 k2' ‘ o} Y Y 9y dk (2,7.9)
0 0 Y * —2_
a
0 0 (2.7.10)
-3 a ) Jk(z+u)+ Jk(z-u)
) v d
o (2.7.11)
-3a
— -8 (1- __) -avlzwi -aylz-ul
jwome k' L? f f ve J,(¥P) y dy du
(2.7.12)
L
. =3a 2u 1
(1- =— 1
jw21f€ K L2 f L) > + du
° i) I\IP + a? (Z‘HJ})z \l p2 + a? (z-u)?
= (1+ 2%) sinh--l all+z) 2z 1 a(L-z)
juome K12 ) L N (1= =) sinh —p 4z sirth
o

~1

©|R
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Note that the expression for Eg has no infinite discontinuities,
If the input current is dnity and the antenna surface 1s designated

by S, the input impedance is given by

Z = - IE . F ds (2.7.14)
in

After the transformations ;% =t and'% =1, the impedance integral for a

monopole becomes

Z = 3 [ - o®y [(ezysinn = 20 & (1-z)sinn @ 220
in~ Jweme K L ‘ a8 t t
o ' ‘

(41
n
< 4M sinh i 2(

B2+ L)’ s (1-m)? -z,]t% n )] an  (2.7.15)
\ Y ! .

The integral has been evaluated exactly but the final answer is quite
involved, To simplify the expression, it is agsumed that |p/a|® << L?,

Under this assumption the impedance is given by
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1.2 aL
%0 Jw2me K L In 5= - 1.375 (2.7.16)

For a triangular current distribution the corresponding monopole impedance

expression as derived previously is

1 aL
Zin T jw2m€ K' L In p 1 (2,7.17)

The two impedance expressions are identical in form and only slightly
different in magnitude,

The hEzﬁ at the ground plane of a monopole is plotted in the
accompanying graph (Figure 2.7.1), The field of the smoothed current
distribution has no infinite discontinuity but instead it has a dis-
continuous slope. Despite the difference in field magnitudes; the im-
pedance expressions are nearly identical,

Given the field calculations for the triangular current, it would be
tempting to conclude that the real part of the input impedance arises
from some sort of energy storage in the vicinity of the characteristic
cones along which the electric field becomes infinite. 1In fact, such a
conslusion has been reached by Kaiser® in his work on the biconical
dipole., However the smooth current assumption produces a finite field

intensity yet gives an impedance expression almost identical to the one
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derived under the friangular current assumption. Thus the occurrence of

field infinities is not necessary for the appearance of a real part in-
the input impedance, This conclusion clearly lends support to the

radiation argument put forward in Section 2.4,
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3. VALIDITY OF THE THEORETICAL MODEL

3.1 A first-Order Correction to the Quasi-Static Theory

It has been shown (Equation (2,1,39)) that the total electric.
field may be approximated at low frequencies by the quasi~static electric

field plus a correction term:

= | N k 2 bN A =
o]
FE 5% [sEEe3,,
e i T k2 4N T (3.1.2)
o k - Kk k - Kk 1
in which
a= - EZ E K E
b= (K'2-K") (k2 + ¥¥) +K' K (&2 + K + 2 kK )
1 2 o1 2 3

The total low frequency electric field (Equation (3.1,2)) may be represented

as the sum of the quasi-static field T and the correction term EB.’ Thus
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'E:“EA+EB (3.1.3)

Using parallel notation, the low frequency input impedance may be

represented by

y/ = 2 + &, (3.1.4)

- : i + N I (3.1,5)

The case to be considered in detail is that of finding the electric
field Ez parallel to a current filament qu The z direction is considered
in order to keep the computations as simple as possible. The electric
field can be expressed as follows:

(3.1.6)

<5 9 Ec.-z-x°'2)(k2+ K¥) 4+ KK (K4 K2 4 2 kz):lkz
E - r_ 2 o 1 2 333 g ("2“‘2*2"2)

kK - Kk

J

J

z
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The expression can be simplified by a transformation to cylindrical

coordinates:_
k = cosP k? + k2 = 2
y DY ’ t 2 Yo
k =Y sinf , K=y 4 k;' C(3.1.7)

Thus the electric field expression becomes

~ K'Z 2 - K"z k2 ~
B = g X Vol =83 (3.1.8)
Ky + K K v+ KKV KK
03 3
For a triangular current distribution, Ez is given by
. L
_ .- jk L e -JksL N ik u -jk u
3= = a- ) \e 3 4+ e 3 du (3.1.9)
K L
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The electric field in space may be found by taking the Fourier transform

of Equation (3.1 8), For convenience k is written in place of k..

3

o0 o0
Eg =1 - EZ’ o K2 I (y0) y dy dk (3.1.10)
2n)
© 0
W k \* K\ °
= I E_\ I' (p,2) 4 3 I"(p, z) (3.1.11)
(2m)? o o
where
0 00 L .
u ejku + e-eru jkz
I (2 = K (1- 5 =—— el*%7 (yp) v* du dy dk  (3.1,12)
(K'y?+ K k%)2 °
-0 O O ©
and
(3.1.13)
rar ik ik
2 u =JKu .
1"@,2) = K& -3 —— St . I (ypryau dy dk
Ko ¥ (K K24 KD
=0 0 O °
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Introducing the anisttropy factor a? = K' /K one may write the above

two integrals as follows:

It (p,z) = f a-

rt:

1 oJ z+u) Jk(z-u) Jo(yp) Yﬁ dk dy du  (3.1,14)
+ a2Y2)2 |
o]

o]

L 2% k?‘ jk(z+u) jk(z-u) s
1", z)=f 1-- } , J, () ¥ dk dy du (3.1.15)
+y2 (k¥ + a? v )

Integration with respect to k (using contour integration) gives

-(3.1.16)

ol |
I'(Q,z) = _13_ f (1__2_ f +ay(z+u§l -ay(z+u) 1+ay|z-u]]e-awz"u| I_(yP)dydu.
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L
2 - 2, - ~
1" (p, 2)= T fi- %) 1 axl | ay(zeu)| e ay(z#u)+ a% 1 saylz-ul|e aylz-ul|
a?-1 ‘ 2a | [a%1 2.1
[¢] 0

1 Jvimw o vlz-ull (y0) dy du (3.1.17)
2 o]
a®~1
Rearranging the terms gives
(3.1,18)

L 00
L T L_u 1 9| ) -ay(z+u) -ayfz-ui
I'(p,z) = ~-2-I (1- I_) f - =50 se + e Jo(yp) dy du
2a
) o
L 00
¢ ; 21". o - o 4. R
1" P,z) = L (1- %)f asl . 52 e ay(z+u)+e aytz=ui
2(a?-1) a(a%-1) a
o 0
2 ) goylzw) oYl z-ul J_(yP) dy du (3.1.19)

a2=1
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After integration with respect to vy,

(3.1.20)
E‘
T 1 o u 1
It (p Z) = m— ( - p— (1" ") - ————— o e et———eeme—— du
’ 2a2 a Oa f L D\rp2+ a? (z+u)? Aj PP+ a’ (z-u)2
.o
g 2
% 1
1" P,z) = : f (1- E) ..(_a_‘;_tl_). - = . 1
2(a”-1) 4 afa’~1) 1&)2+a2 (z+1)? sz+a% (z—u)2
__2 1 + 1 du (3.1.21)

"9 f
a”-1 p\Jp2+(z+u)2 Ajp2+(z-u)2

B
Recall that Ez(p,z) is given by

EB(p,z) = -J_‘*.’E_l [a“ ' (p,z) + b* 1" (p,zaf (3.1.22)
z (2m)?

where

K 2 Kn
a = X and b° = KO
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The corresponding contribution to the impedance of a short monopole is

L
z?n = - f (1- % ) E’: ©,z) dz (3.1.23)
o
L L -
T (cl-c .g.;)ju- %)fu- O p— ¢ 1 au dz
2 2
(2m) o o )\lp2+a2 (z+u)? A]pzd-az (z=-u)2
L
z u 1 1
-C f (1= i) (1~ i) ) 4 du dz (3.1.24)
3 e
J . 4p2+(z*u)2 4p2(z—u)2
4 . 2 4 4
where C = a+ M)- ;, € = a® + b, , € = Z_P._,_, .

Note that the integrands are symmetric in u and z, Thus the impedance may

be expressed as
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o L &
B ol fa 9 P _u 1 1 ‘
z5 = J‘—"l“—z 7 (ci c -5:) a-p | a- P A . du dz
_ (2%) . - J '\lpz + ‘
' [o] (o] .

*
a? (z+u)? ’Jpz*;z (g—u)z ‘

&

L , |
*C fu- %)f(l- D L  —t du dz || (3.1.25)
J: : . ,Jp2+(z+u)2 ,\‘Il)z-v-'(z-u)2 -

o

Integration with respect to u gives

L
B _ Jup - 9\ L z ! 2az 2az ".ez-.)
z, a (cl- c B_a) aLf(l- 2 [Lston 22 fz(sinh 2% - 2 sinh 3
. ]
+2—£—+z2 - pz +4z2-—~2:l dz
N N )
(3.1.26)
L S | =1 -1
tl.. _E ' 2—2; E_ E- 2 2_ 2_ n
- ¢ Lf(l D |Loston 5 +z(s:|.nh 2% - 2 ston p)+ 2,jp +2 Jp2+4z pZIdz

o
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te]
Now one can integrate with respect to z, take the derivative Py and
a

make the approximation L >>/2]. Thus
a 3

Cc c
B JWHL 1 aL 11 1 aL, 17 1 L 11
= 22 A - 1n = - i | 1n = I2= =)= —_ -— D =
z an : ( n + 1ln 2 . + 3 n p+ 18 C3 31np +1ln B

C C C C C
_JeL (_;w 2 )(3; L il) .\ ina, 1 (3
= 4 03 3 1n p 4+ 1n2 18 + % - 3 % 3 . 3.1.27)

With the help of the relation K" = (K'-KO)(K'-I)B it may be shown that

K'-1) (K° )
¢ -DEeK) G KA _2(k'-1)
- 1 4 , =14 O C = KoK . (3.1.28)
K (K'-K_) a? 3 o
from which

EL. EZ. ! 1 L, S K'-1
+ ~C =2 & -Cxzo= =4 4 = g1+ o (3.1.29)
a a2 K? a a2
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Now the monopole impedance correction can be expressed as

K' -1 In:a 1

B JwuL | 1 L ... 17 ‘
= . — — - S l . 110
Zi, T om 3 1n ) + 12~ 7o + + K,_Ko 3t &K (3.1.30)
1
The quasi-static calculation gave
A
b =1 [ln %‘ -1+ 1n a (3.1.31)
in 2MJwE LK’
Combining these,
A
VA =2 + ZB
in in in
2
1 1 1 L 1 L
= ——  —— -— - - i -— f=3 —_—-— 1
o7 Jof L G E..n 1+1na (2? N I:slnp 25

na 1
+ |1+ K'-Ko ot 6K’:| (3.1,32)

where A is the free-space wavelength,



to4d

L
When K“? a, K0 are of the order of unity the ln == terms dominate,

p
Under these conditions, the quasi-static expression is accurate as long as
, 2 2
(22) (%) << 1, In other words, if L = .1\, a correction of about 10%

.wouldibe expected,

However at cyclotron resonance K' and "a” become very large, increasing

' B
the magnitude of zin compared to zin' Thus the quasi-static theory breaks

down at cyclotron resonance unless the magnitudes of K' and "a" are kept low
by collisional damping. As an example, consider the experimental monopole
for which L = ,04\ at 1.6 kmc, At ¥= 1 {cyclotron resonance); X = 1 and
Z = .05, the magnitude of the cmrrection term is 20% of the quasi=-static
impedaﬂce‘magnitudec

It is important to notice that the form of Z?n is almost identical to

A
that of Zin’ showing that the correction term does not introduce any

markedly different kind of impedance behaviour,

3.2 The Effect of Plasma Waves on Impedance

A given current distribution in a uniform, isotropic plasma generates
both trénsverse electromagheti¢ waves and longitudinal plasma waves, Coupling
between the two wave types occurs only in the presence of inhomogeneity or
anisotropy and such coupling will not be considered here, The problem to be
considered is that of a short, thin, cylindrical dipole with a triangular
current distribution as shown in Figure 3.2.1. Since the electromagnetic and
plasma fields are generated independently by a given current distribution
(see Cohen,lapart I), their impedance contributions may be computed separate;y

and added,
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Figure 3,2.1 The source distribution
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The electromagnetic problem has many well=-known solutions but the
plasma wave problem has received little attention, Hessel and Shmoysns
have discussed the field problemsvof an infinifesimal dipole and a current
distribution on a sphere, Whale? h;s calculated the radiation resisténce
of a short dipole‘and compared his calculations with the results of rocket
experiments, Cohen!® has discussed éource problems in warm plasmas and
has included a calculation of dipole rédiation resistance, In the following
pafagraphs an impedance formula is derived for a cylindrical dipole; the
formula is valid for a lossy medium and for any electron density.

The required differential equation can be obtained easily from the

Jwt

paper by Cohenls(Part I), If a time variation e is assumed and if a

collision frequency v is introduced, Cohen's force Equation (2,6) becomes

w vV = - Ne E - 2
J& Nm I. total € ®totar = " V¥ on ‘ (3.2.1)

where V = ng

ca % ML .

=3
= Boltzmann constant
electron temperature

= electron mass (3.2,2)

Z 8 H ® <
il

= average electron density

=
i

variation in electron density
= magnitude of electron charge

1-32=1-Jz

S o
]

<|
i

electron velocity,
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Cohen's field equations can be derived for a lossy medium using the above
force equation, Three of fhe lossy medium equations (equivalent to Cohen's
Equatioﬁs(3.10),(3,12) and (3.21) toéether with the continuity equation can
be used to derive a differential equation for the plasma wave electric field

E due to a source current J.;

el

RE+ X g =2 .2 vV - (3.2.3)

where

In order to carry out field and impedance calculations it 1s necessary
to assume some current distribution J, At 30003, plasma waves have a very
short wavelength (about one centimeter at ten megacycles)., Since the wave-
length may be comparable to a typical antenna radius, it is necessary to
assume a cylindrical current distribution rather than a filamentary distri-

bution, For a z-directed current cylinder of radius fi, the differential
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equation for Ez is

2
L-K 3 5 ep)

K Jwe 9§22 21p

3.2.4)

where

The longitudinal current distribution Jz is assumed to be triangular, The
second derivative of a triangular current distribution is equivalent to
the sum of three delta functions as shown in Figure 3,2.1,

The differential equation now can be expressed as

1-K
PE - E = =2 « —t [(6(z1) 4 6ze1) - 26(2)| BB (3.2.5)
z z K 27p
o Jwﬁob

The above equation can be solved using the transform pair

o 00
Ty, k) = ff tr,2) ¢ % J_(yr) dr dz (3.2.6)
J .

O
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O o0
'f(r,z) —:;— ff 'E (Y)k) eJkZ Jo(-Yr) YdY dk (3.2.7)
=00

o}

Transformation of the differential equation gives

| 1-K I (yp
2 2 2y T _ -JkL | JKL_ o'V
(k" + ¥ +0a) E = e K T [ 2| =g (3.2.8)
Now Ez can be expressed as an inverse transform,
(3.2.9) -
K -1 P |: JKL_ _JKL ]
5 e -2 jkz
E (rz) = — J (yo) e 7J (yr)y dy dk
z JwGOKOL (21[) ff k2+Y2 + a2 o o
~0 o

If it is assumed thatJ y?+ a? always has a positive real part, integration

with respect to k gives

(3.2.10)

+e

T ,,\yz+ a?

J () I (yr)y dy

K -1 ]; Pttt [l <z+L>_2é-A]v2¢92 z
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If one's interest is confined to impedance, one need calculate the field

only at the antenna surface, that is at r = 0. With the substitution

/2

Jf) (v =% f Jo(zyp cosB) do, (3.2.11)

o]

the field expression becomes

AN

Ez(p,z) =

K -1 /2 e -' yz-m.z | z=L} —’yzw.z (z+L) -,.Yz-mzz

o . e +e -2e .

jw4T€ K L l——— ‘
0 O hy . -Yz+ 02

J_(2y Pcos@) y dy do (3.2.12)

If it is assumed that a always has a positive real part, the integration with

respect to y can be carried out (it is a form of "Sommerfeld's integral’),

Ko-l 9 /2 e-aJ(ZwL)2+(2pcose)2 e-,](z+L)2+ (2pcose)2
E (D 2)s ——e—— . £
z (p) Z) Jw4ﬂ€ OKOL T - - - -+ - -
s Q(Z-L) +(2Pcos0) 4(z+L) + (2pcosB)

0 & 22+(2pcose)2
-2 A de  (3.2.13)

nlzz+ (zpcose)r
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Integration with respect to @ will be delayed in order to simplify the
impedance calculation, '
Thevdipole impedance contribution due to the longitudinal plasma

oscillations is twice fhetmonopole impedance contribution, The latter

may be expressed as

L
P z
2, = = - f a- D E (p,2) dz

(o}

In order to express the impedance in terms of simple functions, use is made

of the approximation 12> pz. Integration with respect to z gives

K -1 /2 -
- .2 1 [}e <L __ -20L . -20.pcose:l
in =~ jW2M€ KL T 20L ,
[o I e)
(o]
.+ Ko(20.pcose) - 2E1 (aL) + E1 (2aL) } de (3.2.14)

where E1 is one of the exponential integrals;

8

-Qu

E (aL) = e du, (3.2.15)
1 u

. L
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In the derivation of Equation (3,2,14) the following integral expression

for the function K0 has been used:

00
oau
K (aq) = — du, (3.2.16)
0 2 2
u -q
q

Here it should be mentioned that the assumption of a current filament
instead of a current cylinder would give the above impedance expression
with the exceptions that there would be no 6 integration and that 2 cosf
would be replaced by unity.

Integration with respect to 8 gives

p__ %ol

Z, = EGEEEZEZE lo(up) Ko(ap) - ZEl(aLD + EL(ZGL)

‘.+1
2aL

-aL - _
[4e ol _, -2al -31_(20p) 3LO<2ap{| (3.2.17)

where Lo is a modified Struve function, 1In practical cases aL 1s quite
large but a0 may be fairly small. When ap is small the term containing
KO(GP) is dominant and 1t approaches infinity as ap approaches zero, The
large argument approximationsfor Io and KO are still useful when the

argument is near unity and they give the very simple approximate result
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K -1

P 0 1
= p ¢ '1
Zin = Jo2m€ X L %P (3.2.18)
oo
Combining this with the quasi-static analysis gives
(K -1)
1 L 0
- —_— - - —_— .1
Zin ijﬂEOKOL 1n D 1+ 2ap (3.2.19)

From the above impedance formula, it is clear that plasma waves
affect the impedance of a short monopole appreciably when apo is approxi-
¢ 5
mately equal to unity, Taking T = SOOOK, we find that V = 1,168..%x'10" m/sec,

In a lossless plasma

X~1 w
a = e = ,lX—l v (3.2,20)

To take an example, apo 1,07 when X = 1,25, £ = 4 Mc, and po = 1 cn,
Since these parameter values are representative for the maximum electron
density in the F region of the ionosphere, it is clear that plasma
oscillations cannot be ignored in impedance proBe studies using rockets or
satellites. In the laboratory experiment, however, the corresponding value
of ap would be of the order of 20, Thus it is unlikely that plasma

oscillations would have a measurable effect on the impedance of the experi-

mental monopole,
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The above impedance formulation is quite general but is most convenient
when the frequency 1is lower than the plasma frequency, that is when a is
real (in the lossless case). For frequencies above the plasma frequency,
a is imaginary so one can write jP in place of a, taking care to ensure that
a small loss in the medium gives jB a positive real part, Now the input

impedance contribution due to plasma oscillations can be written as

K -1 ]

P ___o .2 A -jBL ~j2BL ~32ﬁpcos§]
2= jo2m€ XL 7 J2PL [}e € 3e

N

(@]

i AP er <
-3 [%O(ZBPCOSG3 4+ 3 Jo(zppc0ae§]

-2 [§1(6L3+ Jsi(BL{] > [§1§zﬁ13 +Jsi(2ﬁl§] de  (3.2.21)

Where the following formulas have been used:

- EQEEQ n J (qB) - sinfu
2 ’ 2 o A['E"i‘
u?-g? u’ -q
q
(3.2.22)
o
Ci(af) = .22535 du, -s1(af) = EEEEE du
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‘Integration with respect to @ gives

K -1 '
P 0 T . ,‘ o
% = FRIEXL {3 [3,00%,00 + 3 £ @0)] -2 [er o1+ S S T

A

Ee-JﬁL _e-JzﬁL -3 J_(28P) + 3§ go(zﬁpEI (3.2.23)

+E§i(2ﬁL) + J si(2ﬁLﬂ + 395L

where go is aStruve: function,
For the case of a lossless medium, it is helpful to break up the

impedance into its real and imaginary parts.

P {:Ko

Re 2, =om€e KL
. [0 2N o]

3 £ @) + 2 s1BL) - s1(2PL)

+ -Z_Bl_ﬂ Ecos BL-cos2BL~-3 Jo(zﬁp.)—-l (3.2,24)

1-K
o

-7 . .
ImZ, = W 3 J,(BP) N_Bp) - 2Ci(BL) + Ci(2pL)

+ Eé'f. [—4 sinBL + sin2BL + 3 go(zppil} (3.2.25)

It should be noted that Re Ziz is the radiation resistance associated

with the radiation of plasma waves from the antenna,
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In most cases of interest BP is fairly small while PL is quite large,
making the terms containing Ji Bp) and JD (Bp) dominant in the above two
formulas, If BP. is no smaller than unity, the Bessel functions can be

replaced by their large argument approximations, Thus

1-K R
P o 13sin3 Bp
Re zin T w2m€ K L 260 (3.2,26)
o O -
1-K
P o cos2 3P
Im zin ~ wzﬂeoxoL ) 28P (3.2.27)

Combining the above with the quasi-static impedance, one obtains the

approximate formula

ot

K -1 . 7
1 L 0 01 £t
Zin = W 1n l_) -1+ *2“65” cos2 PP -j (l!s‘,n}? Bpﬂ (3.2.28)

M -

The preceding discussion of impedance is based on the assumption of a
triangular current distribution on an antenna which is #hort compared to a
free space wavelength, This assumption may break down, however, at the
plasma frequency under near-~lossless conditions, Furthermore, at high

frequencies Landau damping may affect the impedance,
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3.3 The Effect of a Non-Uniform Electron Density

The introduction of some surface or boundary into a plasma results
in the diffusive flow of the charged particles toward the surface, Close
to the surface, free diffusion predominates and an ioﬂ sheath forms,
Farther away, ambipolar diffusion predominates; the electron and ion densities
are nearly equal but both decrease as the point of obserQation approaches
the surface, Since the théory in this report assumes a upiform medium
with no space charge, experimental verification of the theory must depend
on minimizing diffusion and on understanding its effect on antenna impedénce.
The effect of non-uniform electron density‘qn impedance can be estimated
by calculating the impedance per unit area between two parallel conducting .
plates ;eparated by unit distance, The space between the plates contains
isotropic plasma having én electron density distribution as shown in

Figure 3.3.1, The input impedance pér unit area 1s given by

1 N
1 1
2, = —— dy (3.3.1)
€
in =~ Jwe KO(Y)
o
1
=1 1 dy where U = 1 - jZ {
JwE
-0 1- X(y)
o 1)
B

Ky e -
v o} U-X l—& y+o
> o)
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The assumed electron density distribution
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-a
- B 1n % . B (3.3.2)
The results of some numerical calculatibns using Equation (3.3.2)
are sﬁown in Figures 3.3.2 and 3.3.3, The impedances are normalized to
give é free space reactance of 5 ohms, An examination of all the curves
(especially curve E) reveals that the losses in the plasma are increased
considerably whenever some part of the medium is in plasma resonance,
Note that curves C and F are nearly identical despite the ratio of two
between their respective collision frequencies; apparently under such
circumstances the electron density distribution has a greater influence
on energy loss than the collision frequency. Furthermore it is evident
that the effects on non-uniformity cannot‘be calculated from a density
distribution made up of finite "steps'; only a continuous distribution
will give the enhanced energy loss discussed above,
Curve E of Figure 3,3.,3 exhibits an indentation for 1<X6<q2,2‘$he
similarity of this indentation to the kinks in the theoretical curves of
Section 4,2 (at low values of Yz) suggests that it may be difficult in
practice to distinguish between the effects of non-uniformity and the
effects of anisotropy. However, it is estimated that the conditions of
curve F may be closer to the experimental conditions than those of curve:E,
This conclusion arises from the estimate that in the vicinity of the R, F,
probe the average electron density is about four times the minimum density

(see Section 4.1), Thus the ratio. of maximum to minimum electron density
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o

RESISTANCE COMPONENT,

he impedance of a non-uniform, isotropic plasma between
parallel plates as a function of peak electron density,

Collision parameter

T
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Figure 3.2,3 The impedance of a non-uniform, isotropic plasma between
parallel plates as a function of peak electrondensity.
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may be as high as eight, Under such conditions the impedance curve would
have a very gradual indentation and would be similar to curve F, A further
point is this; the experimentally observed kinks first appear for Y%a .50,
For .50 » Y23 .10 the experimental curves are fairly smooth, For .10 3 Y?3 0
some indentation was observed and presumably it was caused by non-uniformity.
It is therefore suggested that non-uniformity in the experimental results

of Section 4.2 is more likely to move the entire impedance locus toward

the real axis than to cause local distortions which may be confused with
anisotropic effects,

The ion sheath over a conducting surface is a type of non-uniformity
which can be expanded or collapsed by the applicatiﬁn of bias with respect
to a reference electrode, When the sheath 1s collapsed, the plasma is
essentially uniform in the region adjacent to the surface, Bias controls
the sheath thickness by influencing the state of equilibrium between the
electron and ion currents flowing to the surface. Consequently the surface
under consideration (and also the reference electrode) must not be covered
with an insulating layer, Since a state of sheath collapse is easy to
achieve;, it is not necessary to discuss the theory of sheath formation
further in this report,

In a decaying, inactive laboratory plasma, the electron density
distribution at time t. 1s a function of the deionization processes for all
time before t1 (going back to t , the time when the discharge was initiated),
The two principal deionization processes are volume recombination and
diffusion to surfaces, Recombination; being a volume process, tends to make

the electron density uniform but diffusion has the opposite tendency. The
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experimental plasma (see Chapter 45 is initiated at t° by a 2Ms bé pulse,
In the first 50 to 100us, diffﬁsioﬁ is dominant due to the high electron
temperature, There follows a period of domingnt recombination resulting
from the existence of high electron and ion densities, As tﬁesé densities
decrease, diffusion again takes over, From the foregoing discussioﬁ it is
clear that the electron density distribution around the experimental aﬁtenna
will be a very complicated functipn of 511 the events inh the plasma bétWeén
to and tlf

Measurement’ 6f the electron density distribution is difficult because
any probe system disturbs the plasma around it, Becmuse of such diffiéulties
in measureﬁént'the bestvapproach to the non-uniformity problem is to fry

to minimize diffusion, This can be accomplished by choosing a gas with a

‘high recombination coefficient and a low diffusion coefficient (such as

neon), and by using it at as high a pressure as possible, Although the
choice of gas is important, the introduction of a magnetic field parallel
to the diffusing surface is probably the best way to reduce diffusion,
provided that the experiment can be carried out in the presence of the

magnetic field, . . T . U O T BRI
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4, LABORATORY MEASUREMENT OF MONOPOLE IMPEDANCE

4;1 Experimental Apparatus and Measurement Technique

The apparatus is designed to produce a pulsed DC discharge in neon
or helium at a pressure of 1 to 10 mm, Hg° The experiments are carried
out during the plasma decay period (aftérglow) following each discharge

pulse. The "resonance probe"2?

method is used to‘measure electron density
and slotted-line techniques are used to measuré the impedance of the
monopole RF probe immersed in the plasma,

Figure 4.,1,1 is a schematic drawing of the vacuum system, Pump-down
procedure consists of pumping first to about 20 microns (2 x 10 2mm) with
the mechanical pump and then pumping to about 10 ®mm with the diffusion
pump. This procedure may. take fpom a few hours to a few days depending on
the amount of contamination in the system, The application of a spark
coil to the glass parts of the system speeds up the outgassing of *he
glass surfaces, Pump-down is followed by sealing of the system an& back-
filling with the required pressure of neon or helium,. Oberation of the
discharge for a few hours completes the decontamination of the discharge
tube‘interior° After the pump-down and back-fill procedures have been
carried out again, the equipment is ready for impedance measurement
experiments.

Figure 4.1.2 is a diagram of the pulse and RF system used in the experi-
ment., The continuous discharge at the cathode end of the discharge tube

assures dependable starting of the pulsed high-voltage discharge, The 2Us,

discharge pulse is followed by the plasma decay which lasts for several
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miliiseconds, In this experiment.fhe fiist one or iwo millisecoﬁds‘of
the decgy are displayed on thé oscilioscopé. |

Figurésv4,1.3 and 4.1.4 show the details of the discharge tuﬁgvaﬁd
RF probé aSéembly. The coéxial line up to the RF probe is desiéped to
minimize reflections, Both the RF probe (monopolé anfenna) andva'flﬁsh
probe (not shown but mounted fiuSh with the surface of the brass ehd,‘
caﬁ adjacent to the RF pfobe) afe»used as resonanée brqbéS‘to meaéure'
electroﬁ dengity. The electron density given by the monopole resohahce
probe measuremént is an average density for the immediate vicinity of
the monopole; the electron deﬂsity given by thé flush resonance‘probe
has a:much lower value and indicates the degree of plasma non-uniformity
resulting from diffusion to the brass ehd cap, In a typicﬁl experimeﬁt
the electron density adjacent to the end cap was found to be one-quartér
the average électron density along the RF probé.

The method of impedance meagurement is illustrated in Figure‘4.l.5;
The slotted lihe probe is ppsitioned at four points‘sp#ced % wave}eﬂgth
along the line, At each position a photograph of probe voltage vs, timé
is taken, Measurements taken from the photographs are used to plot tﬁe
impedance as indicated., This method is usually réferfed to as the "four
probe” method and is discussed in detail in.fhe_book by Ginzton?! (page 310).

A typical set of probe voltage photographs is shown in Figure 4.1.6a

and Figure 4.1.6b. The experimental conditions are as follows:
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HEEEEE

Figure 4.1.6a Slotted line voltage as a function of
time, (Neon at 4.3 mm, pressure, Time
scale: 320 us/cm,)
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RE SONANCE PROBE

CURRENT

(Neon at 4.3 mm, pressure, Time scale: 320 us/cm.)

Figure 4.1,6b Slotted line voltage as a function of time.
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%
Gas: Neon

*
Pressure: 4.3 mm, Hg,
Frequency: 1.6 Gc,
Bias: 18 volts

*
Oscilloscope horizontal scale: 320is./cm,

Oscilloscope vertical scale: 2 mv, /cm,

Probe dimensions: L = 8.0 mm,, L/Pp = 12,0
The corresponding impedance loci are shown in Figure 4.2.5. The dis- i
charge pulse in each photograph is at a point one centimeter from the left
side of the photograph, In the first 200 HUs., after the discharge pulse the
traces are irregular; thus the impedance loci of Figure4.2,5begin approxi-
mately 250Us, after the discharge pulse, A photograph of resonance probe
current at zero magnetic field (Y2 = 0) is included in Figure 4,1,6b,

It is important to estimate the leak rate of the vacuum system in

order to determine the optimum period for experimentation, At a pressure
of 2 to 10 mm, small changes in pressure ‘cannot be measured accurately with
the equipment of Figure 4.1,1, Thus it is necessary to measure the 1ow
pressure leak rate with the ionization gauge and assume that the leak fate
is not appreciably different at a pressure of a few millimeters. Figure 4,1.,7
is a graph of pressure vs, time as measured using the ionization gauge. As
shown on the graph, there is a period of about one hour after pump down during

which leakage contamination is negligible,

%
Only these conditions are varied in the experiments.
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4.2 Comparison of Experimental and Theoretical Impedance

The monopole impedance measurements to be described were carried

out in neon and helium gases, Some properties of these gases (at 300°K,

1 mm pressure) are summarized in the following table (CGS units):

Gas Electron-molecule Recombination Ambipolar
Collision probability coefficient Diffusion
Coefficient
P a D
c a
Neon 3.3 2.1 x 1077 115
R -8
Helium 19 1.7 x 10 540

135

The values of o and Da are as given by Goldstein®?? and the values of Pc

are as given by Brownz,3

The table indicates that neon is preferable to
helium because neon has a lower diffusion coefficient and a higher recombi-
nation coefficient, This means that a neon afterglow has a greater tendency
. to decay by recombination instead of diffusion, Since recombination is d
volume process and diffusion a surface process, afterglow decay by recombi-
nation tends to produce a uniform plasma, In addition, neon's lower value
of Pc indicates that it may be used at higher pressure (for the same
collision frequency) thus reducing contamination problems,

In some of the experiments a mixture of neon plus 095% argon is used,

At 300°K the argon contributes negligibly to the collision frequency.
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However the electron-molecule collision probability of argon rises sharply
at higher temperatures (the Ramsawy effect), Thus the argon tends to
increase the cooling rate for the electrons in the first 50 to 100Us after
the discharge pulse, The presence of the argon should reduce the tendency
of neon metastable excited states to maintain the electron temperature
above 300°K.

The time required for the attainment of electron thermal equilibrium

4  For

is of major importance and has been studied by Dougal and Goldstein.?
neon and helium at pressures between .5 and 5 mm,, this time constant te

is given by the following formulas:

150 :
Neon: ‘t:e\< - 7 90 Us, for p = 5 mm, teg 120 Hs.
Helium: t < 8.4 , 2 Us. for p = Jlmm, t & 36 Ms.
—_— eN P * e N

Thus it should be possible to begin impedance measurements after the time teo
The theoretical calculations require an estimate of the collision fre-
quency v which is given by the sum of the electron-molecule collisién fre-

quency and the electron-ion collision frequency, That is,
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Similarly, the relative collision parameter Z = is given by

€i<

The appropriate collision frequencies are as follows (as given by Dougal

24

and Goldstein and discussed by Pfisterzs):

4 —
v =-= v P p (MKS. units)
em 3 c o

3/2

3.62 x 10° N, 3.30 x 10° T
v = - = In c
el T 3/2 1/2

e Ni
_ | 8kT,
in which vV =
N T m

|
’-J
o
ct

3

= average velocity of elections with Maxwellian distribution

po = Z%E p = pressure reduced to OOC

N, = ion density

For a fixed frequency of 1.6 Gc., the electron-ion collision parameter
may be approximated by the following simple function of X, the electron

density parameter:

Z = ,010 X
el
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The electron-molecule collision parameter values are summarized in the

following table:

Z
Gas Pressure em
Neon , 2.3 mnm, .010
Neon 4.3 mm, .019
Neon 10,3 mnm, .044
Helium 2.2 mm, . 055

The theoretical and experimental results are shown as Smith chart
impedance graphs in Figures 4.2.1 to 4.2.12, The theoretical graphs
indicate that an increasing magnetic field sweeps the impedance locus
from the top of the Smith chart nearly to the bottom, This effect is
reduced by increasing the pressure, »Increased pressure also tends to
move the loci to the right,

A prominent feature of each theoretical locus is the presence of a
"kink" in the vicinity of X = 1 (plasma resonance). This kink arises from
the logarithm in the impedance formula and is thus related to the elliptic/
hyperbolic feature of the quasi-~static theory., The point X = 1 is always
on the boundary between an elliptic and a hyperbolic region (see Figure
2.1.1). Increasing the pressuré'tends to smooth out the kinks in the

impedance loci, 1In addition, the point X = 1 is seen to follow a nearly
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2.6 Experimental impedance loci for neon (0.5% argon)

Figure 4

at 4,2 mm, pressure
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circular path as the DC magnetic field changes.

It should be noted that the line X + Y® = 1 is also an elliptic-
hyperbolic boundary for X <1, v<1 (Refer to Figure 2.1.,1), The points
X=1 - Yz.are not marked on the theoretical impedance loci but they are
close to the real axis for small values of Y2 and are all capacitive, The
Smith chart graphs reveal no unusual behaviour at X = 1 - yze

In general there is good qualitative agreement between experimeht and
theory. The movement of the impedance loci from the top of the Smith
chart to the bottom with increasing magnetic field is evident in every
experiment, Movement of_the loci to the right and toward the real axis
with increasing collisionvfrequency also is evident, In all cases
(theoretical and experimentai) the cyclotron resonance locus (Y2 = 1) meets
the rim of the Smith chart at right angles,

In each experiment, the points X =1 follow an approximately circular
path, Since these points were determined at zero magentic field and since
an increasing magnetic field tends to increase the time required for after-
glow decay, the points X = 1 are in error for > 0. Furthermore the
magnitude of the errocr increases as v2 increases. Thus the true plasma
resonance points are somewhat to the right of the indicated points and
the necessary correction increases with increasing magnetic field.

In Section 3.3 it was found that a non-uniform electron density tends
to move the impedance locus for Y2 =0 away from the rim of the Smith
chart and toward the real axis, Such an effect is evident in every experi-
mental Smith chart at low values of Y2, Agreement with the theory - is some-

what better at high values of YZ, presumably because the magnetic field



tends to reduce diffﬁsion to the probe surface (transverse diffusion), A
reduction in diffusion fenders the plasma more uniform and uniformity is
assumed in the theory,

The kinks at X = 1 are visible in many of the experimental ioci°
At hiéh,magnetic fields, the kinks:are to the right of the plasma
resonance points obtained at zero magnetic field, As discussed above,
this is probably caused by.the extended decay period of a plasma in a
magnetic field., The theory predicts a smoothing out of the kipks as gas
pressure is increased and ;his effect is noticeable if Figure 4,2,2 1is
compared with Figure 4.2,5. However, a non-uniform plasma density also
would tend to smooth out the kinks and the degree of uniformity depends
on the plasma decay processes which in turn are pressure-dependent, Thus
it is very difficult to identify the cause of a smoothing effect in the
impedance loci when the gas pressure is changed,

The addition of a small quantity of Argon (to increase the rate at
yhich the electrons approach thermal equilibrium) apparently has little
effect, This can be seen by comparing Figure 4,2,3 with Figure 4.2.,2 and
Figure 4,2,6 with Figure 4.2.5,

In contrast to the case of argon, the addition of a very small
amount of air has a pronounced effect on the impedance loci (see Figures
4.2,7 and 4.2.8), The effect of the addition of air is to bring the
experimental results into much closer agreement with the theory, expecially
in the regions of the plasma resonance kinks, The air percentages indicated
on the graphs are rough approximations obtained by extrapolating the

leakage graph of Eigure 4.1,7 to 5 hours (.03% air at 4.3 mm) and to
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25 hours(qls% air at 4.3 mm), It is suggested that the addition of air
tends to cause the predominance of volume processes (recombination,
attachment) in the afterglow decay. This should produce a more uniform
plasma and hence better agreement between theory and experiment, ‘The
argument for additional decay processes is supported by the fact that the
addition of air shortens the overall decay period by a factor ranging
from 1/5 to 1/10. Most of this shortening is in the early part of the
afterglow when the electron density is high., Since the rec¢ombination decay
rate is proportional to the square of electron density, the early after-
glow shoftening is a further argument for the addition of volume decay
processes,

The impedance loci for helium (Figure 4,2,12) exhibit no kinks at
all, In contrast the experiment in neén at 10,3 mm (Figure 4.2,10)
displays kinks which are definite although considerably smoothed in
comparison with the theory (Figure 4.2.9). The two cases compared have
similar collision frequencies as is shown in the collision fréquency table
given earlier in this section, This tends to confirm the earlief assertion

that neon is preferable to helium in an experiment of this type,
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5. CONCLUSIONS

A formulation for electromagnetic theory in a magnetoplasma: is.:
obtained., This formulation is in terms of a scalar potential and a vector
potential, A modified Coulomb gauge condition is selected, the choice
being made so that the quasi-static electric field is displayed as a
distinct part of the total electric field, The total electric field is
expanded in such a manner as to facilitate making a low frequency approxi-
mation (the expansion is similar to the expansions used by.Mittra and
Deschamps1 and also,Kogelnikzs)° In the low frequency approximation, it
is shown that only the quasi-static electric field remains., Furthermore
in the low frequency approximation, part of the magnetic field is shown tov
arise from currents induced in the magnetoplasma . by the quasi-static
electric field, This induced magnetic field is not present in isotropic
media,

The quasi-static electric field of a short dipole antenna is calculated
and in the lossless case the field is found to contain conical discontinuities
emanating from the ends and center of the dipole, These discontinuities occur
only when the quasi-static differential equation is hyperbolic and they lie
along members of the family of characteristic surfaces of the differential
equation,

The quasi~static electric field is used to obtain an expression for the
input impedance of the dipole for any orientation with respect to the DC
magnetic field, Under lossless, hyperbolic conditions it is found that the
input impedance has a positive real part., Integration 6f the foynting vector

over a surface surrounding the dipole indicates that real outward power flow




155

is present and that it arises from the induced magnetic field mentioned
above, It is concluded that the quasi-static theory predicts a form of
radiation from a short dipole in a magnetoplasmaau

The results summarized above are based on the assumption that the
current distribution is triangular and that a filamentary current is an
adequate representation of the dipole current for electric field calcu-
lations. The influence of this assumption is estimated by carrying out
impedance calcqlations for two different current distributions, The
first distribution is triangular but the current is assumed to be spread
over the cylindrical surface of the dipole., The second distribution is
filamentary and such that the slope of the current is zero. at-the-ends™
of the dipole and at the center, These two assumed currents give
impedances which are essentially identical to the impedance as originally
derived,

The quasi-static differential equation can be reduced to Poisson's
equation by a simple dimensional scaling, It is shown that a cylindrical
dipole in a - magnetoplasma has a free space equivalent with a different
length and a distorted cross section., Furthermore, it is shown that the
scaling principie can be used to derive the dipole impedance formula.

A first order correction to the quasi-static impedance theory is
computed, The correction is found to be small in many cases of interest,
including the laboratory experiment used to test the theory.

The generation of longitudinal plasma waves is considered but only for
the isotropic case, Plasma waves are found to affect impedance appreciably

only in the vicinity of plasma resonance, In the laboratory plasma, the
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collision frequency is high enough to mask completely any impedance
effect due to plasma wave generation,

The effect of a non-uniform electron density is considered by calcu-
lating the impedance of a non-uniform, isotropic plasma between parallel
plane electrodes, Non-uniformity is found to have little effect as long
as no part of the plasma is in a state of plasma resonance. If some
region is in resonance, the effect on impedance is similar to the effect
of increasing the collision frequency,

A series of experiments is described in which impedance measurements
are made on a cylindrical probe immersed in a pulsed, decaying plasma, A
DC magnetic field permeates the plasma and is parallel to the dipole
axis, The electron density in the vicinity of the probe is measured using
the "Resonance Probe" technique, Good qualitative agreement between
measured and theoretical impedance is obtained. Quantitative agreement is
only fair, probably because the plasma is quite non-uniform, In some of
the experiments, a small amount of air was allowed to mix with the neon
(neon was used in almost all of the experiments), Addition of the air
resulted in greatly improved agreement between theory and experiment, It
is suggested that the presence of air enhanced volume decay processes in

the discharge afterglow and thus prpduced a more uniform plasma,
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APPENDIX
THE MODIFIED COULOMB GAUGE CONDITION

The gauge condition used in Section 2.1 is

V.KA=0 (A.1)

This will be referred to as the modified Coulomb gauge condition because of

its similarity to the Coulomb gauge condition

Y .A=0 (A.2)

which is mentioned in various texts.

In general, a particular gauge condition is chosen in order to simplify
some aspect of electromagnetic theory. It is necessary to show that the
choice of gauge condition has no effect on the field solution for E and H
and that it is always possible to find potentials which satisfy the gauge
condition. Suppose that A and ¥ are potentials which satisfy Maxwell's

equations through the relations

-~ - juwA (A.3)

(o]
1}

Hﬁ:VXK (A.4)

It 1s assumed that no restriction (such as a gauge condition) has been applied

to A and ¥. It is known that Maxwell's equations are invariant under a gauge
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transformation of the type

>l
]

A+ VP | (A.5)

€
nu

Y- jufP : (A.6)
9 2 ’

in which A ,‘W are the new potentials and P is the gauge function. If 1t

is required that the new potentials satisfy the modified Coulomb gauge

condition, Equation (A.l) becomes

Vtxvp;"VaKK (Ao?)

Equation (A.7) has the same form as the quasi-static equatiqn for the scalar
potential and solutions for this equation may be obtained edsily. Thus a
gauge function B can always be found such that the gauge conditioﬁ 15
satisfied. Furthermore the invariance of Maxwell's equations under g gauge
transformation assures that the field solutions are unaffected by the choice cf

of gauge condition.



